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Abstract. Emerging infectious diseases increasingly threaten wildlife populations. Most
studies focus on managing short-term epidemic properties, such as controlling early outbreaks.
Predicting long-term endemic characteristics with limited retrospective data is more challeng-
ing. We used individual-based modeling informed by individual variation in pathogen load
and transmissibility to predict long-term impacts of a lethal, transmissible cancer on Tasma-
nian devil (Sarcophilus harrisii) populations. For this, we employed approximate Bayesian com-
putation to identify model scenarios that best matched known epidemiological and
demographic system properties derived from 10 yr of data after disease emergence, enabling us
to forecast future system dynamics. We show that the dramatic devil population declines
observed thus far are likely attributable to transient dynamics (initial dynamics after disease
emergence). Only 21% of matching scenarios led to devil extinction within 100 yr following
devil facial tumor disease (DFTD) introduction, whereas DFTD faded out in 57% of simula-
tions. In the remaining 22% of simulations, disease and host coexisted for at least 100 yr,
usually with long-period oscillations. Our findings show that pathogen extirpation or host–
pathogen coexistence are much more likely than the DFTD-induced devil extinction, with
crucial management ramifications. Accounting for individual-level disease progression and the
long-term outcome of devil–DFTD interactions at the population-level, our findings suggest
that immediate management interventions are unlikely to be necessary to ensure the persis-
tence of Tasmanian devil populations. This is because strong population declines of devils after
disease emergence do not necessarily translate into long-term population declines at equilibria.
Our modeling approach is widely applicable to other host–pathogen systems to predict disease
impact beyond transient dynamics.

Key words: disease burden; long-periodicity oscillation; population viability; Tasmanian devil; transmissible
cancer; wildlife health.

INTRODUCTION

Emerging infectious diseases most often attract atten-
tion because their initial impacts on host populations
are frequently severe (de Castro and Bolker 2005, Smith
et al. 2009). Following the initial epidemic and transient
dynamic behavior, long-term outcomes include pathogen
fadeout, host extinction, or long-term endemicity, with
varying impacts on the host population size (Hastings
2004, Benton et al. 2006, Cazelles and Hales 2006). Pre-
dicting which of these long-term outcomes may occur on

the basis of initial transient dynamics is very challeng-
ing, and conclusions about possible disease effects on
population viability based on early epidemic dynamics
can be misleading with regard to long-term dynamics.
For example, disease spread in a newly exposed popula-
tion may slow down after reduction of the pool of sus-
ceptible individuals, and coevolutionary processes
between a pathogens’ virulence and host defense mecha-
nisms may further impact long-term dynamics.
Nevertheless, predicting the long-term consequences

of an infectious disease as early as possible in the emer-
gence process is important for management. If the dis-
ease has a high likelihood of ultimately leading to host
extinction, then strategies such as stamping out infection
by removing all potentially infectious individuals may be
justifiable, despite short-term impacts on the host species
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and ethical considerations (McCallum and Hocking
2005). Resource-intensive strategies such as establishing
captive breeding populations protected from disease or
translocating individuals to locations separated from
infected populations may also be justified (McCallum
and Jones 2006). In contrast, if impacts are transitory,
then a preferred strategy may be to avoid interference to
allow a new long-term endemic disease state or pathogen
extinction to be reached as quickly as possible (Gandon
et al. 2013). Longer-term evolutionary processes can
operate ultimately to reduce the impact of the disease on
the host population (Fenner 1983, Kerr 2012), and inap-
propriate disease management strategies may slow down
evolution of both host and pathogen.
Models of infectious diseases in the early stages of

emergence typically focus on estimating R0, the number
of secondarily infected individuals when one infected
individual is introduced into a wholly susceptible popu-
lation (Lloyd-Smith et al. 2005). This is a key parameter
for devising strategies to limit invasion or control an out-
break because it allows the estimation of vaccination or
removal rates necessary to eradicate disease. However,
by definition, it does not include density-dependent fac-
tors and is therefore sometimes insufficient to predict
the long-term consequences of disease introduction into
a new population (Heesterbeek 2002).
Most existing models for infectious disease are based

around compartmental susceptible–exposed–infected–
recovered (SEIR) epidemiological models, which rely on
a strict assumption of homogeneity of individuals within
compartments (Anderson and May 1991). There is a
parallel literature for macroparasitic infections, which
assumes both a stationary distribution of parasites
amongst hosts and that parasite burden is determined
by the number of infective stages the host has encoun-
tered (Anderson and May 1978). For many pathogens,
pathogen load on (or inside) an individual typically
changes following infection as a result of within-host
processes, causing temporal shifts in transmission and
host mortality rates. For example, the volume of trans-
missible tumors on Tasmanian devils (Sarcophilus har-
risii) increases through time, with measurable impacts
on survival (Wells et al. 2017) and likely temporal
increases in transmission probability to uninfected devils
that bite into the growing tumor mass (Hamede et al.
2013). Similarly, increasing burden of the amphibian
chytrid fungus Batrachochytrium dendrobatidis on indi-
vidual frogs after infection limits host survival, with
important consequences for disease spread and popula-
tion dynamics (Briggs et al. 2010, Wilber et al. 2016).
Burdens of the causative agent of white nose syndrome,
Pseudogymnoascus destructans, which threatens numer-
ous bat species in North America, similarly increase on
most individuals during the period of hibernation
(Langwig et al. 2015). The additional time dependence
introduced by within-host pathogen growth can have a
major influence on the dynamics of host–pathogen
interactions as uncovered by nested models that link

within- and between-host processes of disease dynamics
(Gilchrist and Coombs 2006, Mideo et al. 2008). Such
dynamics are poorly captured by conventional compart-
mental and macroparasite model structures. Thus, con-
necting across the scales of within- and between-host
dynamics remains a key challenge in understanding
infectious disease epidemiology (Gog et al. 2015).
Here we develop an individual-based model to explore

the long-term impact of devil facial tumor disease
(DFTD), a transmissible cancer, on Tasmanian devil
populations. DFTD is a recently emerged infectious dis-
ease, first detected in 1996 in northeastern Tasmania
(Hawkins et al. 2006). It is caused by a clonal cancerous
cell line, which is transmitted by direct transfer of live
tumor cells when devils bite each other (Pearse and Swift
2006, Jones et al. 2008, Hamede et al. 2013). DFTD is
nearly always fatal and largely affects individuals that
are otherwise the fittest in the population (Wells et al.
2017). Population declines to very low numbers con-
comitant with the frequency-dependent transmission of
DFTD led to predictions of devil extinctions, based on
compartmental epidemiological models (McCallum
et al. 2009, Hamede et al. 2012).
Fortunately, the local devil extinctions predicted from

these early models have not occurred (McCallum et al.
2009). There is increasing evidence that rapid evolution-
ary changes have taken place in infected devil popula-
tions, particularly in loci associated with disease
resistance and immune response (Epstein et al. 2016,
Pye et al. 2016, Wright et al. 2017). Moreover, we
recently reported that the force of infection (the rate at
which susceptible individuals become infected) increases
over a time period of as long as 6 yr (approximately
three generations) after initial local disease emergence
and that the time until death after initial infection may
be as long as 2 yr (Wells et al. 2017). Therefore, despite
high lethality, the rate of epidemic increase appears to be
relatively slow, prompting predictive modeling of popu-
lation level impacts over time spans well beyond those
covered by field observations.
In general, there are three potential long-term out-

comes of host–pathogen interactions: host extinction,
pathogen extirpation, and host–pathogen coexistence.
To determine the likelihood of each of these outcomes in
a local population of Tasmanian devils, we used individ-
ual-based simulation modeling (Fig. 1) and pattern
matching, based on 10 yr of existing field data, to project
population trajectories for Tasmanian devil populations
over 100 yr following DFTD introduction.

MATERIALS AND METHODS

Model framework

We implemented a stochastic individual-based simula-
tion model of coupled Tasmanian devil (Sarcophilus har-
risii) demography and devil facial tumor disease
(DFDT) epidemiology. A full model description with

Article e02613; page 2 KONSTANSWELLS ET AL. Ecology, Vol. 100, No. 3



overview of design, concept, and details (Grimm et al.
2006) can be found in Appendix S1. In brief, we aimed
to simulate the impact of DFTD on Tasmanian devil
populations and validate 106 model scenarios of differ-
ent random input parameters (26 model parameters
assumed to be unknown and difficult or impossible to
estimate from empirical studies; see Appendix S1:
Table S1) by matching known system-level properties
(disease prevalence and population structure, see
Appendix S1: Fig. S2) derived from a wild population
studied over 10 yr after the emergence of DFTD
(Hamede et al. 2015). In particular, by running model
scenarios for 100 yr prior to and after the introduction
of DFTD, we explored the extent to which DFTD
causes devil populations to decline or become extinct.
Moreover, we aimed to explore whether input parame-
ters such as the latency period of DFTD or the frequen-
cies of disease transmission between individuals of
different ages can be identified by matching simulation
scenarios to field patterns of devil demography and dis-
ease prevalence.
Entities in the model are individuals that move in

weekly time steps (movement distance h) within their
home ranges and may potentially engage in disease-
transmitting biting behavior with other individuals
(Fig. 1). Birth–death processes and DFTD epidemiology
are modeled as probabilities according to specified
input parameter values for each scenario. In each time
step, processes are scheduled in the following order:

(1) reproduction of mature individuals (if the week
matches the reproductive season), (2) recruitment of
juveniles into the population, (3) natural death (inde-
pendent of DFTD), (4) physical interaction and poten-
tial disease transmission, (5) growth of tumors, (6)
DFTD-induced death, (7) movement of individuals, (8)
aging of individuals.
The force of infection ki,t, that is, the probability that

a susceptible individual i acquires DFTD at time t is
given as the sum of the probabilities of DFTD being
transmitted from any interacting infected individual k
(with k 2 1,. . .,K, with K being the number of all individ-
uals in the population excluding i):

ki;t ¼
�X

k2K bAðiÞbAðkÞ

�
Nt

C

�d 1
1þ ð1� ri;tÞx

� �

� 1
1þ ð1� rk;tÞx

� �
Vk;t

Vmax

� �c�
Ig

here, the disease-transmission coefficient is composed of
the two factors bA(i) and bA(k), each of which accounts
for the age-specific interaction and disease transmission
rate for individuals i and k according to their age classes
A. Nt is the population size at time t and C is the carry-
ing capacity of the study region; the scaling factor d
accounts for possible increase in interactions frequency
with increasing population size if d > 0. The parameter
ri,t is a Boolean indicator of whether an individual

FIG. 1. Illustrative overview of the individual-based model to explore long-term population changes of a Tasmanian devil popu-
lation burdened with devil facial tumor disease (DFTD). Individuals are distributed in a study area. For every weekly time step
seven different processes are modeled, namely, (1) the possible recruitment of young from females (conditional on young survival
during previous weaning time), (2) possible death independent of disease status, (3) movement of individuals away from their home
range center, (4) behavioral interaction between nearby individuals that may result in the transmission of DFTD, (5) growth of
DFTD tumors, (6) death of individuals resulting from DFTD, (7) aging of individuals.
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recently reproduced, and x is a scaling factor that deter-
mines the difference in ki,t resulting from interactions of
reproductively active and nonreproducing individuals.
Vk,t is the tumor load of individual k, Vmax is the maxi-
mum tumor load, and c is a scaling factor of how ki,t
changes with tumor load of infected individuals. The
parameter Ig is a Boolean indicator of whether two indi-
viduals are located in a spatial distance <g that allows
interaction and disease transmission (i.e., only individu-
als in distances <g can infect each other). We considered
individuals as reproductively active (ri,t = 1) for 8 weeks
after a reproduction event.
DFTD-induced mortality Ωsize (modeled as odds

ratios in relation to demographic mortality rates with
values between 0 and 1) accounts for tumor size, and
tumor growth was modeled as a logistic function with
the growth parameter a sampled as an input parameter.
We allowed for latency periods s between infection and
the onset of tumor growth, which was also sampled as
an input parameter. We assumed no recovery from
DFTD; recovery appears be very rare in the field (Pye
et al. 2016).
Notably, sampled scaling factor values of zero for d,

x, and c correspond to model scenarios with homoge-
neous interaction frequencies and disease transmission
rates independent of population size, reproductive
status, and tumor load, respectively, and values of
g = 21 km assume that individuals can infect each other
independent of spatial proximity (i.e., individuals across
the entire study area can infect each other). The sampled
parameter space included scenarios that omitted (1)
effects of tumor load on infection and survival propen-
sity, (2) effect of spatial proximity on the force of infec-
tion between pairs of individuals, and (3) both effects of
tumor load and spatial proximity, in each of 1,000
scenarios. This sampling design was used to assess
explicitly the importance of modeling individual tumor
load and space use for accurately representing the
system dynamics.

Model validation and summary

To resolve the most realistic model structures and
assumptions from a wide range of possibilities and to
compare simulation output with summary statistics from
our case study (a devil population at West Pencil Pine in
western Tasmani; Wells et al. 2017), we used likelihood-
free approximate Bayesian computation (ABC) for
approximating the most likely input parameter values,
based on the distances between observed and simu-
lated summary statistics (Toni et al. 2009). We used the
“neuralnet” regression method in the R package abc
(Csillery et al. 2012). Prediction error was minimized by
determining the most accurate tolerance rate and corre-
sponding number of scenarios considered as posterior
(distribution of parameter values from scenarios selected
to best match empirical evidence according to ABC)
through a subsampling cross-validation procedure as

implemented in the abc package. For this, leave-one-out
cross validation was used to evaluate the out-of-sample
accuracy of parameter estimates (using a subset of 100
randomly selected simulated scenarios), with a predic-
tion error estimated for each input parameter (Csillery
et al. 2012); this step facilitates selecting the most accu-
rate number of scenarios as a posterior sample. However,
we are aware that none of the scenarios selected as pos-
terior samples entirely represents the true system dynam-
ics. We identified n = 122 scenarios (tolerance rate of
0.009; Appendix S1: Fig. S2) as a reasonable posterior
selection with minimized prediction error but sufficiently
large sample size to express uncertainty in estimates. The
distribution of summary statistics was tested against the
summary statistics from our case study as a goodness-
of-fit test, using the ‘gfit’ function in the abc package
(with a P value of 0.37 indicating reasonable fit,
Appendix S1: Figs. S3 and S4).
We generated key summary statistics from the case

study, in which DFTD was expected to have been intro-
duced shortly before the onset of the study (Hamede
et al. 2015), and a pre-election of simulation scenarios,
in which juveniles never comprised >50% of the popula-
tion, DFTD prevalence at end of 10-yr period was
between 10 and 70%, and the age of individuals with
growing tumors was ≥52 weeks. Hereafter, we refer to
“prevalence” as the proportion of free-ranging devils (in-
dividuals ≥35 weeks old) with tumors of sizes ≥0.1 cm3;
we do so to derive a measure of prevalence from simula-
tions that is comparable to those inferred from the 10 yr
of field data. Summary statistics were (1) mean DFTD
prevalence over the course of 10 yr, (2) mean DFTD
prevalence in the 10th year only, (3) autocorrelation
value for prevalence values lagged over one time step
(capturing short-term changes in DFTD prevalence), (4)
three coefficient estimates of a cubic regression model of
the smoothed ordered difference in DFTD prevalence
(fitting third-order orthogonal polynomials of time for
smoothed prevalence values using the LOESS function
in Rwith degree of smoothing set to a = 0.75 in order to
capture the overall temporal changes in DFTD preva-
lence), (5) phase in seasonal population fluctuations, cal-
culated from sinusoidal model fitted to the number of
trappable individuals in different time steps (capturing
population fluctuations due to seasonal birth pulses), (6)
regression coefficient of a linear model of the changing
proportions of individuals ≥3 yr old in the trappable
population over the course of 10 yr (accounting for the
known shift in demographic structure; DFTD dispatches
mostly mature and reproductively active devils). Sum-
mary statistics for the simulations were based on the 37
selected weekly time steps after the introduction of
DFTD that matched the time sequences of capture ses-
sions in the case study, which included records in ~3-
month intervals (using the first 30 time steps only for
population sizes, as the empirical estimates from the last
year of field data may be subject to data censoring bias).
Overall, these summary statistics aimed to describe
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general patterns rather than reproduce the exact course
of population and disease prevalence changes over time,
given that real systems would not repeat themselves for
any given dynamics (Wood 2010). Additionally,
unknown factors not considered in the model may con-
tribute to the observed temporal changes in devil abun-
dance and disease prevalence.
As results from our simulations, we considered the

posterior distributions of the selected input parameters
(as adjusted parameter values according to the ABC
approach utilized) and calculated the frequency and tim-
ing of population or disease extirpation from the 100 yr
of simulation after DFTD introduction of the selected
scenarios. All simulations and statistics were performed
in R version 3.4.3 (R Development Core Team 2017).
We used wavelet analysis based on Morlet power spectra
as implemented in the R package WaveletComp (Roesch
and Schmidbauer 2014) to identify possible periodicity
at different frequencies in the time series of population
sizes (based on all free-ranging individuals) for scenarios
in which DFTD persisted at least 100 yr.
For estimating the sensitivity of the three possible long-

term outcomes (devil extirpation, DFTD extirpation,
coexistence) to variation in the posterior estimates of key
parameters (i.e., the likely parameter values obtained
through the ABC approach), we used boosted regression
trees using the gbm.step routine (binomial error structure,
learning rate of 0.001, tree complexity of 5, k-fold cross-
validation procedure) in the R package dismo (Elith et al.
2008). Similar approaches to global sensitivity analysis
were recently applied to eco-epidemiological models
(Wells et al. 2015, Drawert et al. 2017).

RESULTS

For scenarios that best matched empirical mark–re-
capture data, 21% of posterior scenarios (26 out of 122)
led to devil population extirpation in time spans of 13–
42 yr (mean = 21, SD = 8; ~7–21 generations) after
introduction of DFTD (Fig. 2). In contrast, the disease
was lost in 57% of these posterior scenarios (69 out of
122), with disease extirpation taking place 11–100 yr
(mean = 29, SD = 22) postintroduction (Fig. 2). Loss of
DFTD from local populations therefore appears to be
much more likely than devil population extirpation,
given no other factor than DFTD reducing devil vital
rates. Moreover, fluctuations in host and pathogen after
the introduction of DFTD exhibited long-period oscilla-
tions in most cases (Fig. 3). In the 27 selected scenarios
in which DFTD persisted in populations for 100 yr after
disease introduction, population size 80–100 yr after dis-
ease introduction was smaller and more variable
(mean = 137, SD = 36) than population sizes prior to
the introduction of DFTD (mean = 285, SD = 3;
Fig. 4). The average DFTD prevalence 80–100 yr after
disease introduction remained <40% (mean = 14%,
SD = 4%; Fig. 4). Most wavelet power spectra of these
scenarios showed long-period oscillations over time

periods between 261 and 1,040 weeks (corresponding to
5–20 yr) (Appendix S1: Fig. S5).
Inference of input parameters was only possible for

some parameters, whereas 95% credible intervals for most
of the posterior distributions were not distinguishable
from the (uniformly) sampled priors. Notably, the poste-
rior mode for the latency period (s) was estimated as
50.5 weeks (95% credible interval 48.5–52.6 weeks, for
unadjusted parameter values the 95% was 22.9–
94.3 weeks), providing a first estimate of this latent
parameter from field data (Appendix S1: Fig. S6,
Table S2). The posterior of the DFTD-induced mortality
factor (odds relative to un-diseased devils) for tumors
<50 cm3 (Ω<50) was constrained to relatively large values
(Appendix S1: Fig. S6), supporting empirical estimates
that small tumors are unlikely to cause significant mortal-
ity of devils. Posterior distributions of weekly movement
distances (h) and the spatial distance over which disease-
transmitting interactions took place (g), in turn, allowed
no clear estimates of these parameters (Appendix S1:
Fig. S6). Notably, the 122 scenarios selected as posteriors
all explicitly accounted for the effect of tumor load on
infection and survival, and 90% of selected scenarios
included spatial proximity of individuals as influencing
disease transmission (i.e., selected scenarios comprised
110 models that included both the effect of tumor load
and spatial proximity, and 12 models included tumor load
but not spatial proximity). Sensitivity analysis revealed
that the long-term outcomes of extinctions (DFTD or
devils) vs. coexistence were dependent on a suite of
parameters related to spatial aspects of transmission, den-
sity dependence on transmission, and disease progression
on individual devils (Appendix S1: Figs. S7 and S8).

FIG. 2. Frequency distributions of time spans of devil extir-
pation (upper panel) and devil facial tumor disease (DFTD)
extirpation (lower panel) presented as years after the introduc-
tion of the disease into populations. Number of plotted scenar-
ios correspond to those for which extirpation events were
recorded (26 and 69 out of 122 posterior samples, respectively).
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DISCUSSION

Our results suggest that DFTD will not necessarily
cause local Tasmanian devil extinction or even long-term
major declines, whereas the extirpation of DFTD or
coexistence/endemicity is much more likely. In cases

where DFTD persists in local devil populations in the
long term, oscillations with relatively long periods (5–
20 yr, corresponding to 2–10 generations) appear likely.
These predictions are starkly different from those
derived from previous compartmental models, which
considered all devils with detectable tumors to be equally
infectious and assumed exponentially distributed time
delays. These models predicted extinction (McCallum
et al. 2009), as did models with more realistic gamma-
distributed time delays or with delay-differential equa-
tions that incorporated field-derived parameter estimates
of transmission and mortality rates (Beeton and McCal-
lum 2011). These previous models, however, differ also
from our approach in that they ignore spatial structure
and do not account for the uncertainty in unknown
parameters, such as disease-induced mortality and dis-
ease transmission rates.
The predictions from our individually based model,

derived from 10 yr of observational data at our case
study site (West Pencil Pine), are consistent with obser-
vations now emerging from long-term field studies of the
dynamics of Tasmanian devils and DFTD (Lazenby
et al. 2018). No Tasmanian devil population has yet
become extinct, and populations persist, albeit in low
numbers, where disease has been present the longest
(e.g., at wukalina/Mount William National Park and at
Freycinet, where DFTD emerged, respectively, at least
21 and 17 yr ago; Epstein et al. 2016). Also, a consider-
able decline in DFTD prevalence has been observed in
recent years at Freycinet (Sebastien Comte, unpublished
data). These study sites did not contribute to the fitting
of our model, and at least to some extent constitute an
independent validation and test of the model predic-
tions. Our modeling results suggest that observed

FIG. 3. Examples of long-term devil and tumor dynamics. Scenario 1 is an example of DFTD extirpation, and Scenario 2 is an
example of coexistence. The upper panels show the summarized population sizes (free-ranging individuals ≥35 weeks old) over
100 yr (5,200 weeks) of simulations after the introduction of DFTD in the population; middle panels show the respective wavelet
power spectra, based on Morlet wavelet analysis. Red spectral colors in the power spectra indicate strong periodicity over weekly
time spans depicted on the y axis and the corresponding time during the course of simulations indicated on the x axis; blue spectral
colors indicate weak periodicity. Ridges (black lines) of strongest periodicity often indicate long-term oscillations >500 weeks.
Lower panels show the prevalence of DFTD (growing tumor ≥0.1 cm3) in the respective population.

FIG. 4. Frequency distributions (count) of mean devil pop-
ulations sizes (x axis, upper panel) and mean devil facial tumor
disease (DFTD) prevalence (x axis, lower panel) 80–100 yr after
disease introduction for those scenarios (n = 27) in which
DFDT persisted for at least 100 yr. The light-grey vertical line
in the upper panel indicates the mean population sizes of simu-
lated populations over 100 yr prior to disease introduction.
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population dynamics of devils and DFTD do not
require evolutionary changes, although there is evidence
of rapid evolution in disease-burdened devil populations
(Epstein et al. 2016) similar to rapid evolution in other
vertebrates when subjected to intense selection pressure
(Christie et al. 2016, Campbell-Staton et al. 2017).
One of the differences between earlier models and

those we present here is the inclusion of tumor growth,
with mortality and transmission rates that depend on
individual disease burden. Inclusion of burden-depen-
dent dynamics results in additional and qualitatively dif-
ferent time delays than those incorporated in previous
models. Tumors take time to grow before they have a
major impact on host survival and become highly infec-
tious (Hamede et al. 2017, Wells et al. 2017). This slows
the spread of DFTD and its impact on devil population
fluctuations. It also means that parameters estimated
from field data, without taking tumor growth into
account, may not adequately represent the system
dynamics (McCallum et al. 2009).
McCallum et al. (2009) and Beeton and McCallum

(2011) used an informal rejection method to conclude
that the observed dynamics were inconsistent with den-
sity-dependent transmission, because, in a susceptible–
exposed–infected (SEI) model framework, the observed
high prevalence coupled with population decline could
only be derived assuming frequency-dependent trans-
mission. This led to predictions of devil extinction. In
contrast, our model, which includes spatial aspects of
the dynamics in addition to tumor growth, suggests that
there is some density dependence in transmission, as the
posterior distribution for the parameter describing den-
sity dependence d has a mode close to 1 (Appendix S1:
Fig. S6). This density dependence may be important in
contributing to the increased likelihood of devil popula-
tion persistence predicted by our model.
Our models suggest that documented dramatic popu-

lation declines during the first 10 yr or so of the DFTD
epizootic may represent just the first peak of a classical
epidemic (Bailey 1975). Long-term predictions from our
models suggest, however, that DFTD is a slow-burning
disease with population changes governed by long-term
oscillations.
It is well known, both from simple Lotka–Volterra

models and from a range of empirical studies, that con-
sumer–resource interactions have a propensity to cycle,
driven by the time delays inherent in these systems (Mur-
doch et al. 2003). Disease burden–dependent demo-
graphic and epidemiological parameters, together with
burden growth within the host, add additional time
delays, both lengthening any oscillations and increasing
the likelihood that they will be maintained in the longer
term. Apparently, such time delays increase the probabil-
ity of host–pathogen coexistence, similar to predator–
prey dynamics, rather than host or pathogen extirpation.
Grounded in theory and a reasonable body of modeling
studies of other wildlife diseases, disease-induced popu-
lation extinction appears to be more generally an

exception rather than the rule, unless host populations
are very small, or unless there are reservoir species that
are tolerant of infection (de Castro and Bolker 2005).
Although we found DFTD extirpation 11–100 yr after
its emergence to be more likely than devil–DFTD coexis-
tence, we believe that recognizing the slow-burning
spread of DFTD and possible long-term oscillations is
of practical importance. If both DFTD extirpation and
coexistence need to be considered on decadal time spans,
immediate management actions after disease emergence
and initial population declines are not necessarily essen-
tial, if the goal is to maintain presence of devils, even
with lower population densities in the case of coexistence
(Fig. 4).
The approach we apply here—coupling the flexibility

of individual-based models to account for heterogeneity
in disease burden and space use with approximate Baye-
sian computation to match model outcomes with avail-
able empirical evidence—offers considerable potential for
making predictions regarding the population dynamics
for other emerging diseases, including those with more
rapid ecoepidemiological dynamics (Toni et al. 2009,
Beaumont 2010, Johnson and Briggs 2011, Wells et al.
2015). A fundamental problem in applying modeling
approaches to forecast the outcome of emerging infec-
tious disease epidemics is the need to estimate parameter
values based on empirical data derived from the relatively
early stages of an epizootic, in the absence of retrospective
knowledge (Heesterbeek et al. 2015, Ferguson et al.
2016). Examples include estimating R0 for SARS (Lip-
sitch et al. 2003) and for the 2014–2015 Ebola epidemic
in West Africa (Whitty et al. 2014, WHO Ebola Response
Team 2014) among others (LaDeau et al. 2011). In most
of these cases, the objective is to estimate parameters
associated with the growth phase of the epidemic to assess
the effectiveness of interventions such as vaccination. The
task we have addressed here is even more challenging—
seeking to predict the long-term endemic behavior of a
pathogen that is currently still in the early stages of emer-
gence. We suggest that management efforts to maintain
devil populations in the face of DFTD should be guided
by our changing understanding of the long-term dynam-
ics of the DFTD epidemic. Management efforts in wild
populations that solely aim to combat the impact of
DFTD can be counterproductive if they disrupt long-
term ecoevolutionary dynamics that may eventually lead
to endemicity with stable devil populations. Our ability to
predict future outcomes in the absence of management
actions requires some caution, as we cannot fully exclude
the possibility that DFTD can cause local population
extinctions once populations are small, warranting future
research. Although our findings emphasize the impor-
tance of accounting for individual tumor load for accu-
rate prediction and epidemiological modeling of DFTD
dynamics, our inability to uncover the exact role of devil
spatial proximity on disease transmission means that fur-
ther research is necessary to understand relevant factors
in disease spread.

March 2019 TASMANIAN DEVIL FACIALTUMOR DISEASE Article e02613; page 7



The key management implication of our model is that
“heroic” management interventions are unlikely to be nec-
essary to ensure persistence of Tasmanian devil populations
with regard to DFTD control. Given more information on
immune-related or genetic variation in resistance, the model
could be modified to assess the value of interventions such
as vaccination or reintroduction of captive-reared animals.
At the same time, we believe that any management actions
should be subject to rigorous quantitative analysis to
explore possible long-term impacts. In particular, allocating
resources and scientific endeavors to the management of
wildlife diseases such as DFTD should not disguise the fact
that sufficiently large and undisturbed natural environ-
ments are a vital prerequisite for wildlife to persist and
eventually cope with perturbations such as infectious dis-
eases without human intervention.
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