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Quantitative genetic models of sexual selection have generally failed to provide a direct connection to speciation and to explore

the consequences of finite population size. The connection to speciation has been indirect because the models have treated only

the evolution of male and female traits and have stopped short of modeling the evolution of sexual isolation. In this article we

extend Lande’s (1981) model of sexual selection to quantify predictions about the evolution of sexual isolation and speciation. Our

results, based on computer simulations, support and extend Lande’s claim that drift along a line of equilibria can rapidly lead to

sexual isolation and speciation. Furthermore, we show that rapid speciation can occur by drift in populations of appreciable size

(Ne > 1000). These results are in sharp contrast to the opinion of many researchers and textbook writers who have argued that

drift does not play an important role in speciation. We argue that drift may be a powerful amplifier of speciation under a wide

variety of modeling assumptions, even when selection acts directly on female mating preferences.

KEY WORDS: Fisher process, quantitative genetic model, reproductive isolation, sexual ornaments, stochastic simulations.

Although quantitative genetic models of sexual selection have
illuminated many evolutionary phenomena, they have generally
failed to make explicit predictions about speciation. The list of il-
luminated phenomena includes runaway dynamics (Lande 1981),
the “sexy son” hypothesis (Kirkpatrick 1985; Pomiankowski et al.
1991), good genes (Schluter and Price 1993; Kirkpatrick 1996;
Iwasa and Pomiankowski 1999), and sexual conflict (Gavrilets
2000; Gavrilets et al. 2001, Gavrilets and Hayashi 2005). The fact
that rapid evolution of sexual signals occurs under some condi-
tions in most models in this family implies a strong connection
to speciation. Furthermore, the existence of equilibrium lines or
cycles in some models carries the implication that pairs of repli-
cate populations could speciate as a consequence of equilibrium
differences in sexual signals (Mead and Arnold 2004). Despite the

apparent clarity of these implications about speciation, the models
in question stop short of actually modeling the approach to specia-
tion. In particular, most quantitative genetic models have provided
only speculations about the extent of speciation because they have
failed to make explicit the connection to sexual isolation.

The reason for the disconnect between quantitative genetic
models of sexual selection and speciation is that the models have
primarily considered evolution within single populations, and they
have failed to specify the relationship between trait evolution and
sexual isolation among populations. To successfully make the
needed connection, a model must sample pairs of evolving popu-
lations and assess their sexual isolation. The primary, novel aim
of this article is to make explicit statements about the evolution
of sexual isolation by combining a model for evolution by sexual
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selection (Lande 1981) with a model for sexual isolation (Arnold
et al. 1996). As a result, we can quantitatively describe the con-
ditions that can lead to speciation by sexual isolation in terms
of estimable parameters of selection, inheritance, and population
size.

Translating the output of models of sexual selection into the
currency of speciation (the extent of reproductive isolation) is im-
portant for three reasons. First, by explicitly modeling the time
course of evolving sexual isolation, we will show that drift can
help promote speciation in only a thousand generations. Further-
more, histories in which periods of increasing isolation alternate
with periods of decreasing isolation are common in our sim-
ulations. This pattern, in which isolation waxes and wanes, has
far-reaching implications but is seldom discussed in the speciation
literature. Second, the needed translation connects the literature on
sexual selection models (Mead & Arnold 2004) with an extensive
empirical literature on sexual isolation. By modeling the evolution
of sexual isolation—and not just divergence in sexually selected
traits—we can compare our theoretical results with patterns of
sexual isolation observed in major empirical surveys (Tilley et al.
1990; Coyne and Orr 1997). In particular, we show that under
realistic values of inheritance, selection, and population size, drift
could have played an important role in producing the patterns of
sexual isolation (and hence speciation) that have been observed
in radiations of plethodontid salamanders and Drosophila. Third,
the approach we outline promises a solution to the long-standing,
notorious problem of constructing discriminating tests among
the many alternative models of sexual selection (Bradbury and
Andersson 1987). By establishing a new model-data connection,
we should be able to test sexual selection models using the pre-
dictions they make about patterns of sexual isolation, a possibility
that we will explore in a later article.

A surprising limitation of most quantitative genetic models
of sexual selection is that they fail to explore the evolutionary
stochasticity that arises from finite population size. By assuming
infinite population size, most models make predictions about the
expected evolutionary behavior of the average population, while
ignoring variation about that expectation. This limitation charac-
terizes virtually all of the 30 models of sexual selection reviewed
by Mead and Arnold (2004). The problem is that by ignoring
such stochastic variation we may miss the essential message of
the model. For example, although the deterministic equilibrium
for a model may be a point in phenotypic trait space, stochasticity
(i.e., genetic drift) may produce a considerable cloud of variable
outcomes about that point. A focus on the cloud is important be-
cause, as we will show, stochasticity can amplify the opportunity
for sexual isolation and speciation. Consequently, our secondary
aim is to explore the implications of finite population size for the
evolution of sexual isolation and speciation. Lande (1981) pro-
vided a foundation for this exploration in the form of equations
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for the variance expected among evolving replicate populations
in sexual signals and preferences. Nevertheless, Lande (1981) did
not explore the stochastic evolution of sexual isolation. We use
computer simulations to assess the validity of some of Lande’s
approximations, as well as to make detailed portrayals of the
stochastic evolution of sexual isolation. Although we focus our
combined analytical and simulation approach on a single evolu-
tionary model (Lande 1981), we argue that this approach could
be profitably applied to any of the 30 quantitative genetic models
of sexual selection that have been constructed so far (Mead and
Arnold 2004).

Theoretical Background
We used a model developed by Lande (1981) to simulate the
evolution of behavioral isolation by sexual selection in finite pop-
ulations. According to this model, evolution of a male ornamental
trait is driven by natural and sexual selection. Female mating
preferences for that male trait evolve as a correlated response.
The male ornament, z, and female preference, y, are normally
distributed, sex-limited quantitative traits with phenotypic means
z and y and variances o> and t°. Likewise, the additive genetic
(breeding) values of the two traits are normally distributed. The
additive genetic variances of both the male ornament (G) and
female preference (H) are assumed to be in mutation—selection
balance and to remain approximately constant (Lande 1976). Ad-
ditive genetic covariance between the male ornament and female
preference (B) is created by linkage disequilibrium that arises
from mate choice and sexual selection and is likewise assumed
to remain approximately constant in mutation—selection balance
(Lande 1980, 1981). Males do not protect or provision mates. Ev-
ery female is inseminated each generation, and hence there is no
fecundity selection on female preference nor is there any direct
viability selection on preference. The male ornament experiences
weak natural (viability) selection, described by a Gaussian curve
with an intermediate optimum 6 and width w. Following viability
selection, the male trait distribution experiences sexual selection
arising from female mate choice. The sexual preference of each
female is described by a Gaussian curve with an intermediate
optimum y and width v. In other words, a female’s preference is
absolute in the sense that she most prefers to mate with a male
with ornament value y, and her tendency to mate falls off as the
ornament of a prospective mate deviates in either direction from
that value. The overall selection gradient on the male trait (f) is
therefore generated by natural selection towards an optimal male
phenotype and sexual selection generated by Gaussian mating
preference functions
S y/o—({10+1/w)z+6
p=—== 5 .
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where S is the total shift in the male trait mean caused by se-
lection within a generation (the overall selection differential) and
a = v?/w?. Because there is no direct selection on the female
preference trait y, it evolves by genetic drift and as a correlated
response to selection on the male trait. At equilibrium the forces
of natural and sexual selection balance (B = 0) yielding a line of
equilibrium given by the equation

y=(a+ 1)Z + ab.

The per generation deterministic change in the means of the
male ornament and the female preference is given by the equations

AZ

%GB, (1a)

1

Ay = 2 Bp. (1b)

Away from the line of equilibrium, populations evolve in
response to selection along lines with a slope given by the genetic
regression B/G. Populations evolving in response to selection
either walk-towards a line of stable equilibrium (when B/G <
a + 1) or runaway from a line of unstable equilibrium (when
B/G > o+ 1). In this article we explore the stable (walk-towards)
case, the most likely outcome in many natural systems (Mead
and Arnold 2004). Selection ceases once a population reaches the
stable line of equilibrium, but the population may drift along the
line and will be driven back to the line by selection if it drifts
away from the line.

Lande (1981) also characterized the process of population
differentiation by drift along the line of equilibrium. Let the pop-
ulation mean phenotype be a column vector, (Z )7, where T de-
notes transpose. Each generation sampling in a finite population
of effective size N, will produce variance among a set of replicate
populations in this vector that is given by the variance—covariance

1 (GB
VZNe(BH>' @

At any generation ¢, the probability distribution of mean phe-

matrix

notypes is bivariate Gaussian. Using a diffusion approximation,
Lande (1981) found that the variance—covariance matrix for this
distribution at generation ¢ converges to approximately

H (1 — rz)t

< 1 a+1 3)
No(a+1—-B/G? \a+1(@+1?)’
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where r, = B/ /G H is the additive genetic correlation between
the male ornament and female mating preference. The diagonal
elements in this matrix are the among-replicate variances in trait
means (male ornament and female preference). The off-diagonal

element is the among-replicate covariance between male and fe-
male trait means. Note that the correlation in the matrix on the
right-hand side of equation (3) is 1, so the evolutionary dynamics
are equivalent to univariate evolution along the line of equilibrium.
Consequently, one issue that we can resolve with simulation is the
question of how much additional variance might be contributed
by drift away from, and response to selection back towards, the
line of equilibrium. As we will see, the contribution is negligible.
In the next section we extend the Lande (1981) model so that it
makes explicit predictions about sexual isolation.

A pair of replicate populations, A and B, can diverge in aver-
age phenotype and hence become sexually isolated as their mean
male and female trait values are shuffled towards and along a line
of equilibrium by selection and drift. In any given generation,
sexual isolation can be assessed by calculating the average prob-
ability of mating within and between populations A and B given
the means and variances for male ornaments and female pref-
erences in the two populations. Formulas are derived in Arnold
et al. (1996) under Lande’s (1981) assumptions for the case of
absolute mating preferences. In extending Lande’s (1981) model
to make predictions about sexual isolation, we assume that either
just two traits, z and y, account for sexual isolation, or that z and y
represent linear combinations of many male and female traits that
jointly account for sexual isolation. Under the second interpreta-
tion, we assume that the coefficients of the linear combinations
do not evolve.

The probability that a randomly chosen female will mate
with a male of phenotype z, U (z), is a key female variable in
this formulation. Averaging this probability over the phenotypic
distribution of males yields the average probability of mating, T,
given an encounter between a male randomly chosen from one
population and a female randomly chosen from the same or a dif-
ferent population. This conditional probability, 7, coincides with
the probability of mating that is commonly assessed in studies of
sexual isolation (e.g., Malogolowkin-Cohen et al. 1965), thereby
providing a direct connection between sexual selection models
and empirical data on sexual isolation. This overall probability
of mating, m, reaches a maximum value when the mean of the
male trait, Z, coincides with mean value of mates most preferred
by females, y, and falls off as a Gaussian curve as the male mean
deviates in either direction from the female mean. More exactly,
the average probability of mating when the female is drawn from
population i and the male from population j is

;= cyexp (—dj/2%%), )
where 0 < ¢; < 1 is the distance between the mean of the most
preferred mate of females in population i and the mean of the

male trait in population j, dj = ¥ —Z;, and £? = 1> + v? +
0. Thus, this expression can be used to calculate the average
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probabilities of mating in encounters within and between popu-
lations. The constant c;; can be thought of as the probability of
mating between partners when the male and female means coin-
cide. For simplicity, we assume that c¢;; = 1 for all combinations
of population encounters. Note that the probability given in equa-
tion (4) is the overall probability of mating given an encounter
between potential partners drawn randomly from populations i
and j, and not necessarily the frequency of matings within and
between populations over a generation.

Total sexual (joint) isolation between populations A and B
can be calculated as

JI = g4 + Tigp — TAB — TBA- )

JI is a conventional measure of sexual isolation that ef-
fectively ranges from zero (when all within and between pop-
ulation encounters are equally successful) to two (when all
within population encounters are successful but all between
populations encounters are not) (Bateman 1949; Merrell 1950;
Malogolowkin-Cohen et al. 1965). Because JI does not in-
volve ratios of variables, it has smaller standard errors than
some other measures of isolation. A more complete illustra-
tion of the dynamics of Lande’s (1981) model and its relation-
ship to JI in our simulation model is available at the website
http://oregonstate.edu/~uyedaj/sexualselection.html.

We can also obtain an expression for the expected value of
JI under Lande’s (1981) assumptions. Because the difference be-
tween z and ¥ within populations is expected to be negligible
compared to the corresponding difference between populations,
we can make the simplifying assumption that d44 = dgg = 0. This
simplification yields w44 = 7pp = 1 and map = 1ps. Thus, the
key probability affecting the distribution of JI is the distribution of
interpopulation mating probabilities (145 and 7p,4). The distribu-
tions of these probabilities are identical and simply a function of
the distribution of male phenotype among replicate populations at
generation ¢, which can in turn be obtained using Lande’s disper-
sion matrix equation (3). Using the distribution function method,
we can derive the probability density function (PDF) of mp at
generation ¢ (Appendix), so that the probability that 145 takes the
value x at generation ¢ is

szzz/zz)z(z)
(x) = , for
Faan x/—27D,(1)Z2 In(x)

where D,(¢) is the variance of Z among replicate populations

0<x<1, (©

at generation ¢ as approximated by the first element of Lande’s
dispersion matrix D(#) (eq. 3). Although this density func-
tion in equation (6) is not well characterized, it can be eval-
uated numerically. Assuming that the within population mat-
ing probabilities are close to 1, the expected value of JI at
generation ¢ is 2(1 — E[ map(?)]), where E[ map(f)] is the ex-
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pected value of mup at generation ¢, which is obtained from
equation (6).

Methods

THE SIMULATION MODEL

We simulated the evolution of trait means in 10,000 independent
replicate population pairs for 1000-10,000 generations for each
of 324 parameter combinations in a fully factorial design. Each
replicate consisted of a pair of populations that started at the
same point on the line of equilibrium, the natural selection opti-
mum for the male trait (7 = ¥ = 0). For convenience and without
loss of generality, we scaled z so 6 = 0. Note that this scaling
convention does not imply that there is an absence of the male
ornament at the optimum, 6. Each generation, we calculated the
total deterministic response to selection in each population using
equation (1). Following selection, the per generation change due
to drift was sampled from a bivariate normal distribution with
zero means and a variance—covariance matrix given by equation
(2) and added to the selection response. After 1,000 and 10,000
generations, we calculated JI for each population pair to gener-
ate a distribution of 10,000 replicate values of JI. The mean and
variance of JI and the proportion (P;) of JI values greater than 1.6
(see below) were obtained from this distribution. All simulations
and analyses were performed in R (R Development Core Team
2007).

Wherever possible we made benign and/or biologically real-
istic choices of parameter values. We standardized the phenotypic
variances of the two traits before selection, so that 6 = 12 = 1.
We simulated all combinations of cases in which natural selection
was relatively weak (w? = 25, 50, and 100) and sexual selection
was relatively strong (v = 5, 10, and 20), so that o = v*/m?
ranged from 0.05 to 0.8. The values of w? that we used corre-
spond to the weak end of a distribution of values for stabilizing
selection estimated in natural populations (Kingsolver et al. 2001;
Estes and Arnold 2007). Stinchcombe et al. (2008) have pointed
out a common error in the estimation of coefficients of stabiliz-
ing/disruptive selection (y). The range of w? values that we used
corresponds to a y range of —0.04 to —0.01, assuming no direc-
tional selection (f = 0), which is well within the span of true
values of y reported by Stinchcombe et al. (2008) and, indeed, at
the commonly observed, weak end of the stabilizing selection dis-
tribution. (See Estes and Arnold (2007) for the formula we used to
convert between y and w?.) Measurements of female preference
functions are rarer than estimates of stabilizing selection, but nev-
ertheless, studies of acoustic insects and amphibians (Gerhardt
and Huber 2002) suggest that when preference functions are uni-
modal, curvature is weak compared with the distribution of male
trait values (i.e., V> > o). We varied G and H so that the ge-
netic correlation between ornament and preference was in the
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moderate-to-high range (r, = B/ VGH = 0.6 — 0.9). Parameter
values in this range are consistent with selection experiments in
which a substantial correlated response in female preferences was
detected after just a few generations of selection on male orna-
ments (Bakker 1993; Houde 1994; Wilkinson and Reillo 1994,
Hollocher et al. 1997; Blows 1999; Gray and Cade 2000; Wagner
et al. 2001). Finally, we used moderate to relatively large effec-
tive sizes (N, = 500, 1000, 5000) to be consistent with empirical
estimates (Estes and Arnold 2007) and to satisfy the assumption
that genetic variances and covariances would be maintained by
mutation—selection balance (Lande 1976, 1981).

In evaluating our results, we used a value of JI > 1.6 as
a criterion for substantial sexual isolation. In a survey of sexual
isolation in Drosophila, Coyne and Orr (1997) used one minus the
ratio of the frequencies of heterospecific to homospecific matings
as ameasure of sexual isolation and found that in a strong majority
of sympatric species the value of this index was 0.8 or higher.
Assuming that mgy = mpg = 1, a value of 0.8 for their index
corresponds to JI = 1.6. Likewise, in a survey of sexual isolation
among 31 allopatric pairs of populations of salamanders in the
Desmognathus ochrophaeus complex, JI ranged from 0.20 +0.16
to 1.50 & 0.12 (Arnold et al. 1996), again suggesting that JI =
1.6 is an appropriate criterion for substantial isolation.

In addition to the full simulation model, we used Lande’s
diffusion approximation (Lande 1981, eq. 3) and the PDF of w43,
equation (6), to generate distributions of JI for the same set of
parameter combinations. These distributions were compared to
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-10

Male frait, z

-10 -5 0 5 10
Male trait, z, or female preference, y

the full simulation model to verify the accuracy of the simplifying
assumptions used to derive equations (3) and (6). Methods are
described in more detail in Supporting Appendix S1.

Results

SIMULATED EVOLUTION OF SEXUAL ISOLATION
Simulations of the evolution of a male trait and female preference
based on Lande’s (1981) model show that drift promotes rapid
divergence in sexually selected traits. The model predicts a line
of neutral equilibrium for the population means of the male trait,
Z, and female preference, y, along which the forces of natural
and sexual selection on the male trait exactly balance (Fig. 1).
This equilibrium line is either stable or unstable, depending on
parameters of genetic variance in the two traits and the strength
of natural and sexual selection (Lande 1981). Here we consider
only biologically realistic parameter values for which the line of
equilibrium is stable; that is, populations that drift away from the
line evolve back towards it. Independent populations evolve along
the line by genetic drift, so that two populations may diverge from
each other along the line of equilibrium. As the male trait distribu-
tion in one population diverges from the female preference in the
other population, the probability of mating between populations
decreases. We estimate the degree of sexual isolation between
two populations by the joint isolation index (JI). Figure 1 illus-
trates an instance of modest isolation (Fig. 1A, JI = 0.89) and
an instance of profound isolation (Fig. 1B, JI = 1.95). The time
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Figure 1. Sexual isolation between populations that have diverged along the line of equilibrium. The axes represent population means
for a male trait and female preference. The upper portion of each graph shows the line of equilibrium predicted by the model. The lower
portion of each graph shows the distributions in two independent populations of the male trait (solid lines) and the population-level
average female preference (dashed lines). The scale in both portions is in units of within population phenotypic standard deviation of
the male trait. (A) Two populations that have experienced modest divergence lie relatively close to each other on the line of equilibrium,
resulting in a modest level of sexual isolation (JI = 0.89). (B) The two populations have experienced appreciable divergence, resulting in
almost maximal sexual selection (JI = 1.95). Parameter values for this example are: 62 =1, 12 =1, and v2 = 5.
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Joint isolation

T T T
4000 6000 8000 10000

Generation

T
0 2000

Figure 2. Two examples of simulated evolutionary trajectories for
sexual isolation. Joint isolation index (JI) is shown as a function
of time for two pairs of populations (shown in blue and green). JI
waxes and wanes as the populations drift away from or towards
each other along the line of equilibrium. The horizontal dotted
line corresponds to JI = 1.6, which may be considered a substantial
level of sexual isolation (see text). Parameter values are: G = H =
0.6, y = 0.7, Ne = 1000, w? = 50, v2 = 5 (see text for explanation
of parameters).

course for evolution of isolation in a sample run can be viewed at
http://oregonstate.edu/~uyedaj/sexualselection.html.

Because drift along the line of equilibrium is a random walk
process, the trajectories of population pairs usually do not show a
monotonic increase in sexual isolation. Instead, simulated pairs of
populations may experience temporary periods of substantial sex-
ual isolation (i.e., JI > 1.6) and then return to a level of isolation
that in sympatry would allow interbreeding (Fig. 2). Nonetheless,
the variance of trait values among independently evolving pop-
ulations increases with time (eq. 3). As a result, both the mean
value of JI across a large number of simulated population pairs
and the proportion of pairs of populations at sexual isolation (JI >
1.6) increase monotonically under biologically realistic parame-
ter values, as shown in Figure 3. The change from a unimodal to a
bimodal distribution of JI, apparent in Figure 3, is characteristic
of simulations under realistic parameter values resulting from the
fact that JI is bounded at 2. Given enough time, the proportion of
pairs of populations at complete isolation (i.e., Ttgp = 1ty = 0,
JI ~ 2) asymptotically approaches 1 for all parameter values for
which D > 0.

EFFECTS OF POPULATION SIZE, INHERITANCE, AND
SELECTION ON THE EVOLUTION OF SEXUAL
ISOLATION

The evolution of sexual isolation depends on parameters of inher-
itance, population size, and selection, and we will consider their
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Figure 3. Distribution of joint isolation (JI) in 10,000 indepen-
dent pairs of populations over 10,000 generations of simulated
evolution, showing mean isolation (solid line) and standard de-
viation (dashed lines). Histograms show the distribution of JI at
2000-generation intervals, with shaded bars indicating substan-
tial sexual isolation (JI > 1.6). Note that JI ranges from 0 to 2
and is bimodally distributed at and beyond generation 4000. The
proportion of replicates with JI > 1.6 increased from 9.1% in gen-
eration 2000, to 44.5% at generation 10,000. Parameter values as
in Figure 2.

effects in that order. In light of the fact that the distribution of
JI is often bimodal (Fig. 3), we used the proportion of replicate
pairs that achieved a substantial level of isolation (JI > 1.6) as a
summary measure of isolation for a set of replicate runs. In the
discussions that follow, note that because we have standardized
phenotypic variance of the male and female traits to 1, their addi-
tive genetic variances, G and H, are equivalent to heritabilities. In
our simulations, evolution of sexual isolation by drift increased as
either the genetic variance of the male trait, G, or the genetic cor-
relation between the male and female trait, r,, increased (Fig. 4).
Not surprisingly, because genetic drift depends on effective pop-
ulation size, sexual isolation by drift decreased with increasing
effective population size for all parameter combinations. As a
result, at large population sizes the effect of inheritance parame-
ters was reduced because relatively few population pairs evolved
substantial isolation.

Evolution of sexual isolation also depends on the strength
of both natural and sexual selection on the male trait. Stronger
natural selection on the male trait (lower values of w?) reduces
the evolution of sexual isolation by reducing the rate of drift along
the line of equilibrium (Fig. 5A), as predicted by equation (3). In
contrast, stronger sexual selection (lower values of v?) increases
the evolution of sexual isolation by drift (Fig. 5B) for two rea-
sons. First, stronger sexual selection increases the variance among
populations caused by drift along the line of equilibrium, as pre-
dicted by equation (3). Second, stronger sexual selection reduces
the probability of mating between two populations, equation (4),
given a particular difference in their male trait means.

These effects of inheritance, selection, and population size
on the evolution of sexual isolation are shown in greater detail
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Figure 4. Effect of inheritance and population size on the evolu-
tion of sexual isolation. The proportion of simulated pairs of pop-
ulations with substantial isolation (JI/ > 1.6) is shown as a function
of effective populations size (N.) for different values of additive
genetic variance of the male trait (G) and genetic correlation be-
tween the male trait and female preference (y). The results are
for 10,000 replicate pairs after 10,000 generations of evolution by
drift. Values of other parameters: H = G, y2 = 50, v2 = 5.

in Table 1. Note that substantial sexual isolation can evolve by
drift even in very large populations in only 1000 generations. In
an especially favorable case (r, = 0.9, ®* = 100, v* = 5, a =
0.05), 11% of population pairs of effective size 1000 evolved
substantial isolation after only 1000 generations, and after 10,000
generations 64% had achieved substantial isolation. Such very
rapid evolution is exceptional, however, and in general substantial
isolation commonly evolves only after 5000 or more generations.

We compared the simulation results (Table 1) to results using
both a diffusion approximation and a PDF (Supporting Table S1
and S2, Supporting Appendix S1). All three methods yielded very
similar results for realistic parameter values, indicating that the

A

0.6

0.4

0.2

Proportion of replicates with
substantial isolation

0.0

500 1000 2000 5000
Effective population size (Ne)

simplifying assumptions used to derive equations (3) and (6) are
good approximations.

In summary, using all three methods, the incidence of sexual
isolation increased with time, with additive genetic variance in the
male trait and female preference, with genetic correlation between
the traits, and with strength of female preference. Evolution of
sexual isolation decreased with stronger natural selection on the
male trait and with larger effective population size.

Discussion

TEMPO AND PATTERN IN THE EVOLUTION OF
SEXUAL ISOLATION

The novel contribution of this article is to describe the time course
for the evolution of sexual isolation—not just the evolution of sex-
ually selected traits under assumptions of quantitative inheritance.
Our simulations indicate that sexual isolation is promoted by drift,
even in populations of appreciable size. Instances of substantial
isolation can evolve rapidly, in as few as 1000 generations, under
favorable circumstances (strong genetic correlation between the
sexes, weak natural selection on the male trait, strong female mat-
ing preferences), even when N, is in the range 1000-5000. Thus,
drift due to finite population size is a mechanism that could ac-
count for the moderate degrees of sexual isolation (JI < 1.0) that
have been observed among allopatric populations in surveys of
Drosophila and plethodontid salamanders (Coyne and Orr 1989,
1997; Tilley et al. 1990; Arnold et al. 1996).

Our simulations also suggest that the evolutionary history
of sexual isolation is likely to be one in which isolation waxes
and wanes. As a pair of populations evolves in allopatry, periods
of divergence in male ornaments may alternate with periods of
convergence, resulting in fluctuations in the degree of sexual iso-
lation (Fig. 2). Of course, because the average trajectory across
a large sample of population pairs shows a monotonic increase

Proportion of replicates with
substantial isolation

500 1000 2000 5000
Effective population size (Ne)

Figure 5. Effects of population size and selection on the evolution of sexual isolation. The proportion of simulated pairs of populations
with substantial isolation (JI > 1.6) is shown as a function of effective populations size (N.) for (A) different strengths of natural selection
on the male trait (w?; larger values indicate weaker selection) and (B) different strengths of sexual selection on the male trait (v2; larger
values indicate weaker selection). The results are for 10,000 replicate pairs after 10,000 generations of evolution by drift. Other parameter
values as in Figure 2.
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Table 1. The percentage of replicate population pairs evolving substantial isolation by drift as a function of population size, inheritance,
and selection in simulations of Lande’s (1981) model. The proportion of replicate pairs of populations with substantial isolation (JI>1.6)
shown in each cell represent the summary of 10,000 pairs of replicate populations after 1000 or 10,000 generations of evolution See text
for explanation of parameters and justification for choices of parameter values.

After 1000 generations

After 10,000 generations

G=H=0.2 G=H=0.6 G=H=0.2 G=H=0.6
N, N, N, N,

T o VvV oa 5000 1000 500 5000 1000 500 5000 1000 500 5000 1000 500
0.6 25 20 0.8 0 0 0 0 0 0 0 0 0 0 0 0
0.6 50 20 04 0 0 0 0 0 0 0 0 0.58 0 2.26 9.28
0.6 25 10 04 0 0 0 0 0 0.01 0 0.49 3.45 0.01 839 17
0.6 100 20 02 0 0 0 0 0 0.01 0 0.22 3.28 0.01 8.84 21.6
0.6 50 10 0.2 0 0 0 0 0 0.48 0 255 117 036 20.2 34.6
0.6 25 5 02 0 0 0.02 0 0.2 2.6 0.01 9.37 229 3.2 32.3 45
06 100 10 0.1 0 0 0 0 0.02 1.34 0 579 174 1.71 269 43.6
0.6 50 5 0.1 0 0 008 O 0.67 5.94 0.11 1438 30.2 6.52 412 54.7
0.6 100 5 005 O 0 015 0 1.49 8.35 034 193 352 9.7 44.6 58.7
0.7 25 20 0.8 0 0 0 0 0 0 0 0 0 0 0 0
0.7 50 20 04 0 0 0 0 0 0 0 0 0.58 0 2.26 9.2
0.7 25 10 04 0 0 0 0 0 0.01 0 0.47 3.8 0.01 9.19 16.8
0.7 100 20 0.2 0 0 0 0 0 0 0 0.55 441 001 113 25.1
0.7 50 10 02 0 0 0 0 0 0.64 0 375 137 0.81 23.6 37.8
0.7 25 5 02 0 0 001 O 0.37 4.21 008 114 26.6 433 354 45.5
0.7 100 10 0.1 0 0 0 0 0.23 2.26 0.01 9.09 227 3.17 33.1 48.8
0.7 50 5 0.1 0 0 0.16 0 1.9 8.88 039 19.6 359 9.66 45.7 58.7
0.7 100 5 005 O 001 044 O 321 13.1 0.85 252 40.7 13.7 514 64
0.9 25 20 08 0 0 0 0 0 0 0 0 0 0 0 0
0.9 50 20 04 0 0 0 0 0 0 0 0 0.16 0 0.97 5.84
0.9 25 10 04 0 0 0 0 0 0 0 0.08 1.78 0 484 14.6
09 100 20 02 0 0 0 0 0 0 0 0.33 4.42 0.07 113 26.1
0.9 50 10 0.2 0 0 0 0 0 0.54 0 386 14.6 0.9 24.5 38.8
0.9 25 5 02 0 0 002 0 0.37 3.96 0.06 11.8 26.9 5 35 45.9
09 100 10 0.1 0 0 0 0 0.47 4.24 0.12 15 304 6.75 413 56.5
0.9 50 5 0.1 0 0 038 0 441 144 1.77  27.6 44.6 16.5 54 64.9
09 100 5 005 O 009 179 007 114 26.2 6.71 414 55.7 29.5 63.6 73.6

in isolation (Fig. 3), some individual trajectories may likewise be
characterized by ever-increasing isolation. Waxing and waning
of isolation is especially pronounced in our model because drift
dominates evolutionary dynamics once populations reach the line
of equilibrium. Even in models with more selective constraint,
however, finite population size should result in temporary rever-
sals in evolutionary trajectory and hence in some degree of waxing
and waning.

The prospect of stochasticity in the evolution of reproduc-
tive isolation has often been ignored or dismissed in discussions
of speciation. Coyne and Orr (2004), for example, argued that
sexual isolation would evolve so slowly by drift that this route to
speciation can be disregarded. If populations maintain effective
sizes in excess of 5000, the role of drift may indeed be insubstan-
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tial (Table 1). In vertebrates and many other groups in which N,
is commonly in the range 500-1000, stochasticity may however
play alarge role in the divergence of mating preferences and hence
in the evolution of isolation and speciation. In such groups, finite
population size might promote both the rapid evolution of isola-
tion and repeated evolutionary reversals that we have observed in
our simulations. Furthermore, these conclusions do not require a
strong assumption about the selective neutrality of preferences.
While we argue that drift that will increase the potential for
sexual isolation, an earlier simulation study of Lande’s (1981)
model arrived at the opposite conclusion (Nichols and Butlin
1989). The authors were concerned with the unstable runaway
case and argued on the basis of their simulations that genetic vari-
ance and covariance will not be maintained in finite populations
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and so will limit divergence. They argued that this loss of varia-
tion will be exacerbated by a decrease in effective population size
as the male trait distribution diverges from the viability optimum,
causing fewer males to obtain the majority of the matings. Unfor-
tunately, their simulations were apparently limited to very small
population sizes and strong selection parameters (w? = v? ~ o2 =
%), and on that basis it is not surprising that little genetic variance
and covariance was maintained in their simulation runs. In other
words, Nichols and Butlin (1989) explored a small region of the
parameter space with limited biological relevance (unstable case,
very small population size, strong selection parameters), and con-
sequently their results have little bearing on our conclusions. In
another study that explored the consequences of finite population
size, Wu (1985) simulated evolution by sexual selection in a ge-
netic system with two haploid loci, each with multiple alleles.
Although selection and population size were parameterized in a
way that makes comparisons to natural populations or quantitative
genetic models difficult, Wu (1985) found that the Fisher-Lande
process worked synergistically to accelerate the evolution of sex-
ual isolation, a result in line with ours.

THE ASSUMPTION OF SELECTIVELY NEUTRAL
PREFERENCES

The assumption of the present model that female mating pref-
erences are selectively neutral may seem untenable to readers
familiar with the last 25 years of work on quantitative genetic
models of sexual selection. Since 1981, nearly all such models
have allowed for stabilizing or other modes of selection on prefer-
ences, that is direct costs (Mead and Arnold 2004). The inclusion
of such costs can cause Lande’s (1981) line of equilibrium to col-
lapse to a single, stable point of equilibrium (e.g., Pomiankowski
etal. 1991). Because this collapse seems to erase the possibility of
diversification of male ornaments and speciation, model builders
have focused on alternative scenarios (such as cubic selection on
preference or plateau selection on the male trait) that promote
diversification by creating multiple points or stable limit cycles
(reviewed in Mead and Arnold 2004). While exploring these sce-
narios, focus has been restricted to the deterministic behavior
of the models (i.e., only populations of infinite size have been
explored). Our exploration of stochastic behavior suggests that
dismissal of stable equilibrium points, arising from direct costs to
preferences, has been too hasty.

Adding a cost to preferences may restrict—but does not
eliminate—the possibility of ornament diversification and specia-
tion. Obviously a continuum exists between no costs and substan-
tial costs to mating preferences, and many actual mating systems
probably lie along this continuum. By including finite population
size in models, one can readily show that along this continuum,
the equilibrium changes from a line to a linear cloud to a point.
This equilibrium continuum is shown in Figure 6. In a model

ey
2

1
1

Female preferenc

Male trait,z

Figure 6. The effect of preference costs and population size on
evolutionary equilibria. Adding direct costs to female preference
results in a single equilibrium point in a population of infinite size
(e.g., Pomiankowski and Ilwasa 1993). We conducted simulations
using the dynamic equations of Pomiankowski and Iwasa (1993,
eq. 4) but allowed finite population size. This stochastic version
of their model, which we will describe elsewhere, yields linear
elliptical clouds at equilibrium. The size of the cloud depends on
the magnitude of the preference costs and population size. Sim-
ulations were run for 10,000 generations for 2000 replicate pop-
ulations with Ne = 1,000. The ellipses shown here are the 95%
confidence ellipses at equilibrium. The scales on both axes are in
units of within-population phenotypic standard deviation. Param-
eter values for Pomiankowski and Iwasa’s preference cost (B) for
each ellipse are: (A) b = 0.1 (B) b = 0.01 (C) b = 0.0025 (D) b =
0.001 (E) b = 0 (i.e., no preference cost). Other parameter values
are:y=0.7, G=H = 0.6, »® =50 and v2 = 5.

with selection on preferences in a finite population, a balance
is achieved between drift, which tends to disperse populations
away from the equilibrium point that characterizes populations
of infinite size, and selection, which drives populations towards
that point. The resulting equilibrium cloud is large if populations
are small and/or the cost of preferences is weak. As shown in
Figure 6D, the equilibrium cloud can be of substantial size even
in large populations if the cost of preferences is sufficiently small.
Notice that in this particular case, mean ornamental values of pop-
ulations may differ by nearly six phenotypic standard deviations.
Thus, even when selection acts on preferences, both substantial
ornament diversification and sexual isolation can occur.

CLOUDS RATHER THAN POINTS OF STABLE
EQUILIBRIUM

Our exploration of the stochastic behavior of Lande’s (1981)
model highlights the need to explore stochastic versions of other
models of sexual selection. A trend in the theoretical literature
since 1981 has been to focus on equilibrium conditions in popu-
lations of infinite size, sometimes dropping genetic covariances
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from the model on the grounds that they do not affect the equilib-
rium (e.g., Kokko 2005). Our analysis of Lande’s (1981) model
highlights the importance of both inheritance and selection during
stochastic evolution. In particular, the size and configuration of
the equilibrium cloud is affected both by population size and the
genetic covariance between ornament and preference, equation
(3). Because the Fisher-Lande process that relies on the genetic
correlation between the sexes is embedded in virtually all of the 30
models derived from Lande (1981), stochastic versions of those
models probably possess equilibrium clouds with similar proper-
ties. The implication of this result, which needs to be confirmed by
more theoretical work, is that the last couple of decades of mod-
eling have underestimated the potential for speciation by sexual
selection.

BRIDGING FROM SEXUAL SELECTION TO SEXUAL
ISOLATION AND SPECIATION
Our results establish the feasibility of explicitly modeling the
evolution of sexual isolation and hence the path to speciation. An
explicit connection to isolation and speciation is missing in most
quantitative genetic models of sexual selection because modeling
ends with a specification of ornament and preference evolution.
The essential, often missing step is to extend existing models so
that they treat the sampling properties of pairs of diverging popu-
lations. A second, missing step is to evaluate the degree of sexual
isolation that is achieved by any given amount of divergence in
ornaments and preferences. We used a particular model of sex-
ual isolation (Arnold et al. 1996) to accomplish this second step,
although sometimes it can be achieved directly from the model
(Gavrilets and Hayashi 2005). In any case, specifying the degree
of isolation in the currency of one of the standard measures of
sexual isolation (e.g., JI) is especially useful. By using one of
the standard currencies, the results of the model can be related
directly to the extensive empirical literature on sexual isolation.
One problem in making a connection between sexual selec-
tion models and empirical measures of sexual isolation is the ne-
cessity of specifying a particular functional form for mating pref-
erences. In the present case, we used just one (Gaussian-shaped,
absolute) of many possible forms for mating preferences. An im-
portant goal for the future will be to establish whether conclusions
about the evolution of sexual isolation depend tightly on assump-
tions about mode of preferences. Although general conclusions
about the evolution of ornaments do not seem much affected by
alternative assumptions about preference functions (Lande 1981),
they might affect the rate at which isolation evolves.
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Appendix

Probability density function for 4

Probability density function for w,5. Let 74be the mean male
trait value from population A and Zp be the mean male trait
value from population B. Approximating evolutionary divergence
from an ancestor as a Gaussian diffusion process, the male trait
means at generation ¢ are normally distributed with mean of zero
and a time-dependent variance equal to the first element in the
dispersion matrix, equation (3),

H( —rp
No(a+1-B/G)"

Dz(t) =

Consequently, Z = 74 — Zp is normally distributed with a
mean of zero and a variance approximately equal to 2D,(¢). If

we assume that the differences between male and female trait
values within a population are negligible compared to between
populations (dss = dpg = 0), then equation (4) becomes,

TAA = CAA
TIBB = CBB

Tpa = cpaexp(—Z%/(2E%))

Tap = capexp(—Z*/(2X%)).

Thus, we can derive a formula for the cumulative distribution
function of mp (and consequently of mwpqas well) by solving for
the cumulative distribution function,

Fr,,(x) = Plexp(—Z*/(2%*) < x] = P [z > \/—2221n(x):| .

Substituting the cumulative distribution function for Z

Frpy(x)=1—F [,/—ZEzln(x)],

where F; is the cumulative distribution function of the random

yields,

variable Z. Taking the derivative of both sides with respect to x
and substituting in the probability density function (PDF) of Z
yields the PDF for w4z at generation ¢,

E2x22/2DZ(1)

xy/=27D.()=%In(x)

for0 < x < 1, and O elsewhere.

ang(x) -

The expected value of w45 at generation 7 can be determined
by integrating x fr,,(x) over x,
szzz/wzu)

dx.
J /=2 D)X Inx)

Elmap] =

Note that this probability of inter-population mating depends
on two variances, D.(¢) and %2. The first variance represents the
dispersion among replicate populations in mean male trait value
at generation 7. The second variance is ¥? = 1> + v?> + 0%, a
constant (Arnold et al. 1996). Assuming that map = 74 and
mas = Tigg = 1, then the expected value of JI at generation ¢ is
E I (1) =2(1 — E (a5(1).
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Figure S1. Difference in mean JI between the diffusion approximation (DA) and the full simulation model for all 324 parameter
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Table S1. The percentage of replicate population pairs evolving substantial isolation by drift as a function of population size,
inheritance, and selection simulated using the diffusion approximation.

Table S2. The percentage of replicate population pairs evolving substantial isolation by drift as a function of population size,
inheritance, and selection estimated using the probability density function.
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(This link will take you to the article abstract).

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting informations supplied
by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

594 EVOLUTION MARCH 2009



