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Abstract

The increasing availability and complexity of next-generation sequencing (NGS) data sets make 
ongoing training an essential component of conservation and population genetics research. A workshop 
entitled “ConGen 2018” was recently held to train researchers in conceptual and practical aspects of 
NGS data production and analysis for conservation and ecological applications. Sixteen instructors 
provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and 
analyze data for many important research questions. Lecture topics ranged from understanding 
probabilistic (e.g., Bayesian) genotype calling to the detection of local adaptation signatures from 
genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions 
of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess 
adaptive capacity, and strategies for training the next generation of conservation genomicists.

Subject areas:  Conservation genetics and biodiversity, Genomics and gene mapping
Keywords:  adaptive capacity, conservation genetics pedagogy, effective population size, evolutionary significant units, popula-
tion genomic data analysis

Informing conservation efforts is one of the most important and 
challenging needs of the genomic era (Allendorf 2017; Lewin et al. 
2018; Hunter et al. 2018). To help meet this challenge, 16 experts 

from many areas of genomic data analysis met to discuss and teach 
recent analytical approaches at the 10th International Population 
Genetics Data Analysis Workshop for Conservation (“ConGen”), 
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held at Flathead Biological Station in September of 2018. The goal 
of the workshop was to train participants to apply rigorous theory 
and novel molecular and computational approaches in conservation 
and population genetics.

Since the first ConGen in 2006 (https://cibio.up.pt/congen/index.
html), the molecular and computational tools accessible to conser-
vation have grown in number and matured (Andrews and Luikart 
2014; Benestan et al. 2015; Hendricks et al. 2018). ConGen 2018 
participants originated from 16 countries and had a wide range of 
research questions and career stages including undergraduate and 
graduate (Masters and PhD) students, postdoctoral scholars, uni-
versity faculty, laboratory technicians, and governmental agency 
scientists. This diversity of origins and perspectives enriched the 
questions, comments, discussions, and overall learning experience.

Historically, ConGen and other conservation genetics courses 
have focused mainly on questions that require and use only ~10–
20 well-tested markers (e.g., microsatellites) such as hybridiza-
tion, inbreeding, population structure, and loss of genetic diversity 
(Allendorf 2017). Today, the variety of molecular tools, amount of 
genetic data, and range of computational approaches have greatly 
expanded. Conservation genomics can be broadly defined as the ap-
plication of genome-wide markers and new technologies to address 
problems in conservation. A more narrow-sense definition requires 
high-density loci to characterize locus- or gene-specific patterns and 
address conceptually novel questions that were intractable using 
traditional approaches (Allendorf et  al. 2010; Garner et  al. 2016; 
Allendorf 2017; Luikart et al. 2018).

Throughout this genetics-to-genomics transition, many authors, 
including those of previous ConGen workshop reviews, have re-
flected on this paradigm shift. They have noted the best practices for 
data production and quality control (filtering), experimental design, 
computational approaches, career guidance, and the increasing roles 
of women (Andrews and Luikart 2014; Benestan et al. 2015; Shafer 
et al. 2017; Hendricks et al. 2018). In this meeting review of ConGen 
2018, we focus our reflection on training the next generation of re-
searchers in conservation genomics through the novel components 
of this year’s workshop: progress in understanding central concepts 
including assessing population differentiation and conservation 
units, estimation of effective population size, molecular data pro-
duction and analysis for diverse empirical systems (Figure 1), and 
prospects for understanding genomic vulnerability.

Progress in Central Concepts

Populations, ESUs, and CUs: How Do You Identify 
Them Using Genomics?
Defining biologically meaningful management units within species 
is challenging (Waples and Gaggiotti 2006; Bradshaw et al. 2018; 
Waples and Lindley 2018). For conservation, an Evolutionarily 
Significant Unit (ESU) is a distinct population or group of popula-
tions that can be protected under the U.S. Endangered Species Act 
(ESA; USFWS and NMFS 1996; Waples and Lindley 2018). In Robin 
Waples’ (Northwest Fisheries Science Center) lecture on ESUs, he 
explained that while there is no single or universal definition of a 
population, the competing definitions of ESUs emphasize 2 criteria: 
1)  substantial reproductive isolation and 2)  an important compo-
nent of the evolutionary legacy of the species (Waples 1991; Waples 
and Gaggiotti 2006). Evolutionary legacy refers to having distinct 
or different adaptations probably important for species persistence. 
Molecular genetic data have long been used to assess the isolation 

criterion for identifying ESUs, but prior to the age of genomics, the 
evolutionary significance of a population was difficult to determine 
and was largely inferred by ecological observations.

Figure 1. Empirical examples provided by instructors at ConGen 2018 
across a broad range of data types, questions, and taxa. (A) RAD-Capture 
and GWAS in characterizing the genetic architecture of disease-related traits 
in Tasmanian devils (Sarcophilus harisii; Margres et al. 2018), (B) targeted-
capture, demographic modeling, and linkage-disequilibrium analysis in 
understanding the evolutionary history of color polymorphism of the gray 
wolf (Canis lupus; Schweizer et  al. 2018), and (C) RADseq and analysis of 
population structure in identifying range expansion and hybridization of 
the tamarisk beetle (Diorhabda spp.), a recently introduced biocontrol 
agent (Bean and Dudley 2018). Photographs by (A) Menna Jones, (B) Marco 
Musiani, and (C) Ed Kosmicki, respectively, reproduced with permission. See 
online version for full colors.
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With genomic data, we can now identify loci, alleles, and sur-
rounding chromosomal regions associated with adaptive differen-
tiation, which improves our capacity to define ESUs while taking 
into account both demographic and selective processes (Funk et al. 
2012, 2018). Incorporating adaptive variation into ESU listing raises 
theoretical and practical challenges (Funk et al. 2018). Mike Miller’s 
ConGen 2018 lecture on an early-migration phenotype in salmonids 
demonstrated this challenge, wherein previous studies found little 
evidence for genetic isolation, but locus-specific analysis and simu-
lation modeling provided strong evidence for this phenotype as an 
important component of the species’ evolutionary legacy (Box 1).

Effective Population Size and Effective Number of 
Breeders (Ne and Nb)
Effective population size (Ne) is one of the most important concepts 
and parameters in conservation and evolutionary genetics because 
it influences the rate of loss of genetic variation, the levels of indi-
vidual inbreeding, and the effectiveness of natural selection and gene 
flow (Wang et al. 2016). Conservation genetics has long employed 
estimates of effective population size to help assess and monitor the 
vulnerability of a population to potentially harmful genetic changes 
as mentioned above.

Although genomic data provide greater resolution and ability to 
estimate Ne in a growing diversity of species and scenarios, these 
data can also present unique challenges in estimating Ne. In his 
lecture on Ne, Waples discussed the recent advances in theory and 
computational analysis, which have vastly improved Ne estimation 
in the genomic era (Waples et al. 2014, 2018a, 2018b; Hollenbeck 
et al. 2016; Zhou et al. 2018). The use of thousands of loci, many 
of which are probably physically linked, will downwardly bias Ne 
estimates unless physical location (linkage) is taken into account 
(Waples and Do 2008; Do et al. 2014b; Waples et al. 2016).

The recently improved LDNe method implemented in the 
NeEstimator program (as of version 2.1) improves reliability of con-
fidence intervals and reduces bias in estimating Ne by calculating 
r2 on locus pairs, employing positional information from assembled 
loci or, when available, linkage groups or chromosomes (Do et al. 
2014a). Likewise, the improved capability of NeEstimator to handle 
missing data, which calculates a fixed inverse variance-weighted har-
monic mean at each locus (Peel et al. 2013), has been shown to be ac-
curate with up to 50% missing data (Nunziata and Weisrock 2018). 
Together, these methodological improvements make estimating ef-
fective population size more accessible to studies with reduced rep-
resentation data (i.e., NGS methods that subsample a genome with 
a restriction enzyme or targeted capture) with or without a reference 
genome.

Waples and Andrew Whiteley (University of Montana) high-
lighted Nb, or the number of effective breeders in a cohort, as a 
promising parameter for genetic and population management be-
cause of its intrinsic relationship to Ne and potential relationship 
with population abundance or environmental conditions (Kamath 
et al. 2015). An advantage of estimating Nb, rather than Ne, is that 
Nb provides frequent (e.g., yearly) information on population status, 
rather than having to wait to sample between generations which 
is often required by temporal estimations of Ne (e.g., Waples and 
Yokota 2007; Waples et al. 2014).

Whiteley’s lecture emphasized monitoring population cohorts 
using a single sample and sib-ship or linkage-disequilibrium methods 
(Kamath et  al. 2015; Waples et  al. 2018b) and demonstrated the 
nuances of estimating Nb through recent studies of brook trout 
(Salvelinus fontinalis). He cautioned that while estimates of Nb can 

Box 1. How will an adaptive locus influence listing of distinct 
salmonid populations under the Endangered Species Act (ESA) 
of the United States? 

Chinook salmon (Oncorhynchus tshawytscha) and steelhead 
(O.  mykiss) have distinct spring (premature) and fall (mature, 
normal) migratory phenotypes (called runs) in several river basins 
across western United States. The spring-run phenotype differs sub-
stantially in behavior and physiology but has declined in abundance 
throughout the ranges of both species. Spring-run phenotypes have 
ecological, economic, and cultural importance, and are valuable 
to commerce and ecosystems for their greater fat content (Cook 
2017). They also have had long histories with indigenous peoples, 
including documented ritualistic management by the Yurok, 
Karok, Hupa, Shasta, and Tolowa (Swezey and Heizer 1977). 
Due to reliance on cool, clean water in the summer, spring-run 
salmonids are particularly vulnerable to anthropogenic effects 
and have dramatically declined (Thompson et al. 2019).

Low genetic divergence (e.g., FST < 0.03) between prema-
ture and mature migrants within local rivers was found by 
multiple studies (Allendorf 1977; Chilcote et al. 1980; Waples 
et al. 2004; Arciniega et al. 2016). Based on these findings, pre-
mature migrant forms did not meet the first criterion for ESU 
status, sufficient reproductive isolation (Waples and Lindley 
2018). However, recent genomic studies by Prince et al. (2017) 
and Thompson (2019) have identified a single locus that has a 
major effect on the migration phenotype and highlighted the 
potential for the loss of allelic variation at this locus to have sig-
nificant ecological consequences, leading to legal action (Hess 
et al. 2016; Prince et al. 2017; Micheletti et al. 2018; Narum 
et al. 2018; NMFS 2018; Thompson et al. 2019). Prince et al. 
(2017) conducted a genome-wide association study that iden-
tified a single genetic locus (GREB1L) associated with prema-
ture migration. Further phylogenetic analyses suggested that 
the GREB1L alleles determining the premature migrant pheno-
type arose only once in each species, and subsequently spread 
through dispersal and positive selection.

Thompson et al. (2019) further examined selection against 
the premature migrant phenotype of Chinook salmon in the 
Rogue River in Oregon after the construction of a dam. They 
estimated the strength of selection needed to explain the change 
in allele frequencies at GREB1L under multiple dominance 
scenarios and predicted allele frequencies in future populations. 
Results suggested that the premature migration allele is prob-
ably codominant with respect to fitness and may be lost from the 
population if the current selection pressure continues (Figure 2B).

Together, these findings suggest that the premature migration 
phenotype (and allele) is vulnerable to loss and unlikely to re-
appear for a long time if lost from a population. Populations 
where GREB1L early-migration alleles are prevalent may de-
serve special legal protection. Based on these results, the Karuk 
Tribe submitted a petition to list the Klamath premature Chinook 
under the ESA (NMFS 2018). In February 2018, National 
Oceanic and Atmospheric Administration (NOAA) Fisheries an-
nounced a finding of substantial scientific evidence indicating the 
creation and listing of a new ESU as threatened or endangered 
may be warranted. At the time of writing, the National Marine 
Fisheries status review of the Upper Klamath and Trinity River 
Chinook salmon was still pending. The decision on whether to 
list Klamath premature Chinook could have wide-reaching im-
plications for conservation (Waples and Lindley 2018).

Journal of Heredity, 2020, Vol. 111, No. 2 229
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/article-abstract/111/2/227/5731771 by U
niversity of Idaho user on 08 July 2020



track abundance in some species (Ferchaud and Hansen 2016), 
which may supplement or allow demographic-based monitoring, it 
is unlikely to closely track abundance for species with high variance 

in reproductive success and limited reproductive habitat. For ex-
ample, for brook trout that spawn in available habitat patches Nb 
estimates had no association with yearly abundance in 2 popula-
tions; however, they provided important information about envir-
onmental conditions (Whiteley et al. 2015). A comparison among 
several brook trout populations showed that Nb was the largest at 
intermediate flow conditions, which is consistent with biological hy-
potheses (Whiteley et al. 2017).

The theory and application of Nb was presented mainly in the 
context of aquatic organisms. Nonetheless, Nb is easier to estimate 
than Ne for most taxa (beyond aquatic organisms), requiring only 
a single sample per generation (Waples 2005; Waples et al. 2013; 
da Silva et al. 2018). Whiteley’s example demonstrated the import-
ance of incorporating detailed biological information in the study 
design, analysis, and interpretation of effective population size es-
timates and its relationship to census size (Waples 2005; Waples 

Box 1. Continued

These studies and the resultant legal action have recharged 
debate over whether, when, and how species should be man-
aged for single genes (Kardos and Shafer 2018). A concern is 
that as genomics continues to make it easier to find adaptive 
genetic variation, management units could be over-split as 
more and more important loci and alleles are identified. As this 
case study in Pacific salmon shows, iterative and focused gen-
omic studies have the power to identify crucial adaptive vari-
ation and to inform long-standing debates.

Figure 2. (A) Stacked bar graph representing the number of wild adult Chinook salmon passing Gold Ray Fish Counting Station on the Rogue river in 2004; 
colors represent estimated proportion of each GREB1L locus genotype. (B) Selection modeling in Rogue Chinook. Curves representing the decline (or loss) of 
the spring-run allele frequency over time under a recessive, dominant, or codominant scenario. Spring-run alleles are thought to be codominant and predicted 
to be lost by ~2075. The modeling assumes random mating and no genetic drift. (C) Image of a Chinook salmon. Figure modified from Thompson et al. (2019). 
See online version for full colors.
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et al. 2013). Simulations, such as those conducted by ConGen 2018 
participants with EasyPop (Balloux 2001) and those implemented 
in tools, such as AGENE (Waples et al. 2013), NeOGen (Blower 
et  al. 2019), and Neff (Grimm et  al. 2016), can be employed to 
determine an appropriate sampling scheme, implement sensitivity 
analysis, and corroborate empirical results (Waples et al. 2013).

Molecular Genomic Data Generation and 
Analysis

Training the next generation of conservation genomicists in-
cludes empowering participants to evaluate and incorporate a 
wealth of diverse molecular genetic methods. The first ConGen 
meetings in 2006–2009 were focused on microsatellites. Since 
2010, genomic techniques such as restriction-site associated 
DNA-sequencing (RADseq) have increasingly been the main 
focus (Andrews and Luikart 2014). Of 33 participants at ConGen 
2018, 27 participants had RADseq data, 4 participants had exon 
capture data, and 5 participants had whole-genome sequencing 
(WGS) data. Several participants reported having multiple types 
of molecular data.

At ConGen 2018, methods both currently applied widely and 
those only recently employed in conservation genomics were dis-
cussed. Paul Hohenlohe (University of Idaho) reviewed the many 
variations and utility of RADseq (Andrews et al. 2016), Stefan Prost 
(Senckenberg Museum) presented a guide to de novo genome as-
sembly (Fuentes-Pardo and Ruzzante 2017; Hendricks et al. 2018), 
and Rena Schweizer (University of Montana) highlighted the prac-
tical and conceptual considerations regarding exon capture (Bi et al. 
2012; Schweizer et al. 2016). Here, we highlight advances in RAD-
capture, transcriptomics, and epigenomics.

Rapture: A Hybrid Reduced Representation 
Approach
Lectures by Hohenlohe and Seth Smith (University of Montana) 
demonstrated the utility of Rapture (RAD-capture; Ali et al. 2016), 
a reduced representation technique that combines an improved 
RADseq library preparation protocol (informally referred to as 
bestRAD) with an in-solution sequence probe capture to enrich 
sequencing libraries for a subset of RADseq loci (e.g., polymorphic 
loci, loci in or near genes, diagnostic loci for species identification or 
admixture analysis, and/or loci with high heterozygosity or high FST, 
all on the same capture array). The major improvements prescribed 
by the bestRAD protocol are the ability to reduce the proportion 
of PCR duplicates, efficiency in using smaller starting quantities of 
DNA, and efficiency in scaling from hundreds to thousands of sam-
ples (Ali et al. 2016). We encourage interested readers to see Meek 
and Larson (2019) for a detailed review of sequence capture tech-
niques and their utility in conservation. Here we focus on the details 
each individual researcher must weigh in respect to each individual 
project: cost, PCR duplication rate, and computational approaches.

Because individual (indexed) samples are pooled early in the 
bestRAD protocol, the cost of the library preparation kit and cap-
ture reaction scales well for large sample sizes. For instance, up to 
96 uniquely indexed individual samples are pooled prior to adding 
sequencing adapters and amplifying the library using a commercially 
available kit. Seth Smith estimated that bestRAD libraries can be gen-
erated for <$5.00 per individual after the cost of bestRAD adapters 
is amortized. The per sample cost for the hybridization capture re-
action was ~$0.50, assuming the above multiplexing scheme and a 
bait panel of up to 20 000 loci. This cost could vary substantially 
depending on the vendor used for supplies (e.g., the capture array) 
and does not include labor for the data production, which is often 
the majority of the cost. The cost of sequencing depends on the de-
sired coverage. The number of samples that can be multiplexed per 
sequencing lane is a function of the number of targeted loci, the PCR 
duplication rate, and the proportion of reads that do not that align 
to targeted loci. He cautioned that the PCR duplication rate and 
proportion of off-target reads are expected to vary depending on the 
proportion of RAD loci targeted for capture and the total number of 
loci in the original RAD library which can be influenced by sample 
quality and PCR duplicate rates, and are typically 20–30% but can 
be >80% (e.g., Margres et al. 2018).

Following sequencing, Rapture data can be analyzed with any 
method applicable to RAD-type data (Andrews et al. 2016). Among 
these, Stacks (Catchen et al. 2013) is commonly used for population 
genomics with RADseq and has been covered at ConGen since 2011. 
At ConGen 2018, Amanda Stahlke (University of Idaho) taught de 
novo and reference-based locus assembly and genotyping in Stacks 
version 2.3, which has several major changes from the original 
implementation (Rochette et  al. 2019). Participants examined the 

Box 2. How will changes in DNA methylation influence 
adaptation to artificial environments in hatchery fish?

A common goal of captive breeding programs is to support 
declining wild populations (i.e., genetic rescue); however, 
there is concern that rearing in artificial conditions may in-
advertently reduce fitness. In conservation salmonid hatch-
eries, there is mounting evidence that tank-rearing conditions 
can induce developmental plasticity and impact life-history 
traits. To examine the role of epigenetic changes in hatchery-
reared steelhead trout (Oncorhynchus mykiss), Gavery et al. 
(2019) raised steelhead in an artificial stream and small simu-
lated hatchery tank for 2  years, well past germ cell differ-
entiation, then sampled individuals and performed reduced 
representation bisulfite sequencing (Meissner et  al. 2005) 
to determine methylation patterns. After accounting for fa-
milial relationships influencing methylation patterns, they 
were able to discern up-methylated and down-methylated 
gene differences between their 2 conditions (artificial stream 
vs. tank). Although family relatedness had the largest effect, 
environmental differences also caused significant changes in 
the methylation pattern. If these epigenetic changes occur at 
an early stage in development in response to environmental 
pressures, they may not only affect the organism’s growth, but 
will continue to persist well past the time when those environ-
mental pressures are no longer present. This has implications 
for conservation of salmonids and other species if environ-
mentally induced epigenetic shifts are transmitted to offspring 
and grand offspring. For example, if hatchery-adaptive epi-
genetic changes are transmitted to wild fish, the fitness of wild 
fish could decline (Christie et al. 2016; Le Luyer et al. 2017). 
There is substantial evidence of maladaptive introgression in 
wild populations (Rodriguez et al. 2019), though more work 
must be conducted to determine whether epigenetic changes 
can persist, be transmitted across multiple generations, and 
spread within and among natural populations (Charlesworth 
et al. 2017).
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effects on F-statistics of removing PCR duplicates and aligning to a 
reference or not. These choices depend on genetic and financial re-
sources available, local laboratory expertise, and the study question. 
Useful sensitivity frameworks for assessing RAD locus assembly, the 
benefits of a reference genome, and the effects of PCR duplication 
have been described elsewhere (Ebbert et al. 2016; Paris et al. 2017; 
Shafer et al. 2017; Euclide et al. 2020). For example, low-coverage 
sequencing can be a cost-effective and powerful approach (Maruki 
and Lynch 2017) but is also the most sensitive to the effects of PCR 
duplicates (Euclide et al. 2020).

As one of the most widely used software pipelines for genotyping 
RADseq data and population genomic analysis, the Stacks program 
(Catchen et al. 2013) has been discussed and used at the ConGen 
course for several years. Here we highlight some key changes in the 
recently released Stacks 2 (Rochette et al. 2019) taught at the 2018 
course. For users with bestRAD data (Ali et al. 2016), the addition 
of the --bestrad flag to process_radtags reorients paired fastq files 
such that bestRAD indexes and the remainder of restriction cut-sites 
are always located at the beginning of the first read, eliminating the 
requirement of an external script to reorient the reads prior to input.

In Stacks 2, users also have the ability to input paired-end reads 
and assemble local RAD contigs with data produced by protocols 
with a randomly sheared end (e.g., Ali et al. 2016) or random oligos 
in ddRAD (Schweyen et al. 2014). Instead of concatenating forward 
and reverse reads as previously recommended (Rochette and Catchen 
2017), paired-end reads are incorporated through the new tsv2bam 
and gstacks, the new genotyping module, yielding major improve-
ments in memory usage and genotype-calling frameworks (Rochette 
et al. 2019).

Novel genotype-calling algorithms have also been implemented 
in gstacks, including the diploid Maruki and Lynch (2017) maximum 
likelihood genotyping model which can incorporate population-level 
genotype frequencies (the “low-coverage model”) and error-rates 
with Bayes’ theorem. In gstacks, users may increase --alpha to re-
quire a greater statistical threshold for calling genotypes, instead of 
setting a redundant minimum stacks depth flag in the population 
module (-m is deprecated). These advances in Stacks hold promise to 
advance RADseq analysis in conservation genomics by yielding more 
accurate genotypes and longer haplotypes (Rochette et al. 2019).

Transcriptomics and Epigenomics
Transcriptomics and epigenomics, the high-throughput studies of 
transcribed products and epigenetic modifications of the genome, 
respectively, can be used to disentangle mechanisms of local adap-
tation (i.e., plasticity vs. Darwinian adaptation) across biological 
and temporal scales (Hendricks et al. 2018; Kelly 2019), though the 
application of understanding these mechanisms in conservation is 
still developing (Christie et al. 2016; Le Luyer et al. 2017). Recent 
technological advances in library preparation which better accom-
modate degraded and low input DNA have made transcriptomic 
analysis more accessible to systems of conservation concern 
(Schuierer et al. 2017). RNAseq, the high-throughput sequencing of 
synthesized cDNA fragments (Wang et al. 2009), has been used to 
identify the molecular basis for resilience to changing environment 
in corals (Barshis et al. 2013; Pratlong et al. 2015; Bay et al. 2017) 
and redband rainbow trout (Oncorhynchus mykiss gardieri; Garvin 
et al. 2015; Chen et al. 2018).

Still, there are surprisingly few studies that employ these tech-
niques to inform conservation. Perhaps this is due to fewer labs having 
the capacity to produce and analyze these potentially tissue- and 

time-specific data, the actual and perceived conflicts in evolutionary 
paradigms, or the ongoing discussion regarding the role of plasti-
city in long-term population persistence (Kelly 2019). Regardless, 
transgenerational gene expression and epigenetic changes can underlie 
an adaptive response to environmental change (e.g., corals).

At ConGen 2018, participants gained exposure and experience 
to transcriptomics through an interactive lecture on data produc-
tion and hands-on analysis of differential gene expression led by 
Joanna Kelley (Washington State University). Participants learned 
how to functionally annotate variants of interest and perform en-
richment analysis with instructor Mackenzie Gavery (University 
of Washington) and an epigenomic data set. Here we highlight 
Gavery’s lecture demonstrating the potential utility of epigenomics 
in conservation with a recent study of DNA methylation of cytosine 
residues at CpG sites induced by hatchery conditions (Gavery et al. 
2018, 2019; Box 2).

Understanding Adaptive Potential and Genomic 
Vulnerability
Genomic methods now allow researchers to determine the gen-
etic basis for variation in fitness, quantify adaptive capacity, and 
predict potential outcomes for natural populations facing en-
vironmental change (Funk et  al. 2018). Adaptive potential can 
be defined as the capacity of species or populations to respond 
to stressors (e.g., environmental change) by genetically based 
changes (Nicotra et  al. 2015; Funk et  al. 2018). Rachael Bay 
(University of California Davis) and Christen Bossou (Colorado 
State University) demonstrated the exciting potential for genomic 
vulnerability, which is an estimate of the extent to which allele 
frequencies of wild populations must change to maintain current 
genotype–environment associations in the future (Fitzpatrick and 
Keller 2015; Box 3).

Box 3. How will genomic vulnerability of yellow warblers 
influence their evolutionary response to climate change?

In their workshop lecture, Bay and Bossou invited partici-
pants to assess genomic vulnerability of the yellow warbler 
(Setophaga petechia; Figure 3), a migratory songbird distrib-
uted across much of North America (Bay et al. 2018). First, 
participants identified the environmental variables that best 
explained variation at a subset of genome-wide SNPs using 
gradient forest analysis, a regression tree-based machine 
learning approach (Ellis et al. 2012). Then, genomic vulner-
ability was calculated as the difference between current versus 
predicted gradient forest-transformed climate variables. 
A  significant negative association was found between gen-
omic vulnerability and current population trends, suggesting 
that populations with high genomic vulnerability may have 
already been affected (Bay et  al. 2018). This approach pro-
vides a useful starting point to incorporate evolution into 
models that predict the effects of climate change on biodiver-
sity. Important future extensions of the model could include 
incorporating additional evolutionary components, such as 
gene flow and population sizes. Predictive modeling, such as 
the strategy taught by Bay and Bossou, will become increas-
ingly useful for conservation as it incorporates both local 
adaptation and projected environmental conditions.
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The Next Generation: Developing Theoretical, 
Empirical, and Analytical Skills

Conservation genomics is a multidisciplinary field, requiring practi-
tioners to have a working knowledge of population genetic theory 
and molecular biology while developing the computational skills 
necessary to apply novel and conventional analyses to increasingly 
large data sets. These challenges, raised by Allendorf et al. (2010), 
Garner et al. (2016), and Shafer et al. (2016), remain relevant and 
were discussed by participants and instructors alike at ConGen 
2018. Conservation genomicists often need to navigate social (e.g., 
legal), ecological, and molecular dimensions, sometimes in the most 
challenging of field conditions (Groom et al. 2006).

Researchers must also be able to effectively communicate with 
stakeholders, including agency managers, NGOs, policy makers, and 
the public (Hand et al. 2018). The diversity of topics covered during 
lectures, discussions, and hands-on activities during ConGen 2018 
demonstrates the importance of taking a holistic approach when 
tackling questions in conservation genomics. One recommendation 
from managers at ConGen to help conservation geneticists ensure 
their data is used for conservation management was to design a 
study with a manager who has plans in place (e.g., including per-
mits, policy, etc.) to use the genetic data once it is available to make 
management decisions (Boyer M, personal communication). This 
recommendation is an important consideration for future discussion 

in conservation and genetics workshops where open forums and 
group conversations can be organized. Other big-group discussion 
topics ranged from the best programming languages for population 
genomics (e.g., R and shell scripting), to career choices.

Theory in population genetics has a long and rich history, and 
yet, is still developing with effective population size concepts and 
empirical estimation methods among the most important areas (e.g., 
Waples et al. 2014; Ceballos et al. 2018; Beaumont and Wang 2019). 
The importance of theory, and specifically effective population size, 
is exemplified by the following quotes: “Nothing in evolution makes 
sense except in light of population genetics” (Lynch and Walsh 2007) 
and “Nothing in population genetics makes sense except in light of 
effective population size,” which Robin Waples at ConGen 2018 said 
was a quote from Fred Allendorf (University of Montana). For ex-
ample, when testing for genotype–phenotype associations, knowing 
the effective population size is helpful because Ne influences the ex-
tent of linkage-disequilibrium along chromosomes, which in turn 
determines the density of markers and molecular methods needed 
to conduct a powerful genome-wide scan (e.g., Kardos et al. 2016).

The increasing diversity and complexity of analysis also requires 
that code be well annotated and highly reproducible. A number of 
instructors shared version-controlled worksheets and R code via 
Github including Racheal Bay, Eric Anderson (Southwest Fisheries 
Science Center), Joanna Kelley, and Brenna Forester (Colorado State 

Figure 3. The wide breeding range of the yellow warbler (Setophaga petechia), pictured here, and recent population declines in some regions motivated the 
hands-on tutorial of Bay and Bossou. Photograph by Daniel Karp reproduced with permission.
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University). Kelley, for example, provided instruction and materials 
for transcriptome assembly and quantifying differential gene expres-
sion (https://github.com/jokelley/congen-2018). Also of discussion 
was the increasing availability of R packages to efficiently analyze 
and visualize NGS data sets and results and the importance this has 
in increasing reproducibility and reliability, and lowering the barrier 
on bioinformatics and data analysis in general (Paradis et al. 2017).

Summary and Conclusions

In conclusion, major conceptual advances discussed at ConGen 
2018 include estimating the effective population size per co-
hort or generation (e.g., Nb with age structure, using thousands 
of loci), assessing population genomic vulnerability, and using 
adaptive genetic information to identify conservation units. New 
approaches have emerged for cheaper genome-wide data pro-
duction (e.g., Rapture) and data analysis (e.g., major updates in 
Stacks). Emphasis in recent years at ConGen including the use of 
tools becoming more cost-effective and available to conservation 
genomics including DNA capture, transcriptomics, epigenomics, 
genome-wide, and reference-genome-based work. The pur-
pose of ConGen remains to introduce recent novel techniques 
and approaches to a wide range of participants from different 
career paths, institutes, and countries. Recent work by ConGen 
workshop instructors and other researchers has expanded the 
types of data used in conservation genomics at large (e.g., see 
transcriptomics and epigenomics and Forester et al. 2018). A re-
searcher now often has multiple data types that may include 
everything from de novo genome assemblies to RADseq to dif-
ferential gene expression among populations and more. Although 
the amount of genomic data production grows exponentially, 
the continuing challenge for genomicists remains in obtaining a 
solid foundation in population genetics theory, data filtering, and 
computational analysis. Through training and experiences such 
as those available at workshops like ConGen 2018, the modern 
conservation and population genomicist will be able to examine 
a wide range of central questions, evaluate the appropriate 
tools for data production and analysis, and integrate across dif-
ferent data types from RADseq to whole-genome resequencing, 
RNAseq, and more. As population genomics continues to evolve, 
we hope this review of ConGen 2018 will help serve as a bench-
mark, motivation, and starting point for information and refer-
ences for readers from world-wide to advance multiple disciplines 
including conservation, ecology, and evolutionary genomics.
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