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ABSTRACT We announce the complete circularized mitochondrial genome assem-
blies of Diorhabda carinata and Diorhabda carinulata, beetle species introduced to
North America for the biological control of invasive shrubs of the genus Tamarix L.
(Tamaricaceae). The assemblies (16,232 and 16,298 bp, respectively) each comprise
13 protein-coding genes, 22 tRNAs, two rRNAs, and a noncoding region.

The tamarisk beetle, a cryptic species complex in the genus Diorhabda (Coleoptera:
Chrysomelidae), originated from Eurasia and was introduced to North America for

the biological control of invasive Tamarix spp. (1). To better understand evolution
within this group of beetles, we assembled and annotated the mitochondrial genomes
of Diorhabda carinata and Diorhabda carinulata, which are the only introduced Diorh-
abda species that are sympatric in their native ranges (1).

Bean and colleagues (2) examined evolutionary relationships among introduced
Diorhabda spp. This study revealed polyphyly based on the cytochrome oxidase
subunit I mitochondrial gene, while analysis of nuclear loci (amplified fragment length
polymorphism analysis) grouped samples into four clades corresponding to their
morphospecies designations. Additionally, D. carinata readily hybridizes with Diorhabda
sublineata and Diorhabda elongata under laboratory conditions without a reduction in
fecundity (2, 3) and appears to do so in the field (4). D. carinulata failed to produce
stable hybrids with the other three clades (2). These results warrant further work to
determine the possible influence of introgression, mitochondrial selection, or sex-
biased dispersal patterns (5).

For this study, we used a single male from full-sibling inbred lines developed from
continuous cultures of each species at the Palisade Insectary, Palisade, CO. We pro-
duced a 26-generation inbred line of D. carinata originating from Qarshi, Uzbekistan
(38.86°N, 65.72°E). A five-generation inbred line of D. carinulata was produced from a
laboratory culture established from field-collected beetles in Lovelock, NV (40.02°N,
118.52°W), where D. carinulata from Fukang, China (44.17°N, 87.98°E), was released in
2001. For D. carinata, we dissected the testes and extracted DNA with a MagAttract
high-molecular-weight (HMW) DNA kit (Qiagen). For D. carinulata, we dissected the
head, thorax, and testes using a DNeasy blood and tissue kit (Qiagen). We constructed
whole-genome shotgun sequencing libraries using the NEBNext Ultra II DNA library
prep kit for both species. The D. carinata library was sequenced on a HiSeq 4000
platform (Illumina) to produce paired 150-bp reads. The D. carinulata library was
sequenced on a MiSeq platform (Illumina) using v3 reagents to produce paired 300-bp
reads.

We trimmed adapters from raw reads using Sickle 1.33 (6). With 44,665,534 reads for
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D. carinata and 28,532,798 reads from D. carinulata, we used NOVOPlasty 2.7.2 (7) to
assemble each mitochondrial genome. The Diabrotica barberi mitochondrion (GenBank
accession number KF669870) was used to seed the D. carinata assembly. Then, we used
the D. carinata assembly to seed the D. carinulata assembly. Annotations were per-
formed with MITOS2 (last modified 16 June 2017; Git hash 6b33f95) (8) using RefSeq 63
Metazoa and the invertebrate genetic code.

From the D. carinata and D. carinulata reads, we assembled one circularized mito-
chondrion assembly per species of lengths 16,232 and 16,298 bp, average coverages of
3,323� and 3,846�, and G�C contents of 22.1% and 21.1%, respectively. Annotations
of both genomes comprise 13 protein-coding genes, 22 tRNAs, two rRNAs, and a
noncoding region (d-loop). We did not identify light origin (OL) in either assembly. The
assembly sizes, G�C contents, and annotations are consistent with those of other
chrysomelid mitochondrial genomes (9–13).

Data availability. Raw reads and mitochondrial DNA (mtDNA) genome sequences

for D. carinata and D. carinulata have been deposited in GenBank under accession
numbers PRJNA513507, MK359256, and MK359257.
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