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Integrating genomics in population models to forecast
translocation success
Travis Seaborn1,2 , Kimberly R. Andrews3 , Cara V. Applestein4, Tyler M. Breech5,
Molly J. Garrett1, Andrii Zaiats4, T. Trevor Caughlin4

Whole-genome sequencing is revolutionizing our understanding of organismal biology, including adaptations likely to influ-
ence demographic performance in different environments. Excitement over the potential of genomics to inform population
dynamics has prompted multiple conservation applications, including genomics-based decision-making for translocation
efforts. Despite interest in applying genomics to improve translocations, there is a critical research gap: we lack an understand-
ing of how genomic differences translate into population dynamics in the real world.We review how genomics and genetics data
could be used to inform organismal performance, including examples of how adaptive and neutral loci have been quantified in a
translocation context, and future applications. Next, we discuss three main drivers of population dynamics: demographic struc-
ture, spatial barriers to movement, and introgression, and their consequences for translocations informed by genomic data.
Finally, we provide a practical guide to different types of models, including size-structured and spatial models, that could be
modified to include genomics data. We then propose a framework to improve translocation success by repeatedly developing,
selecting, and validating forecasting models. By integrating lab-based and field-collected data with model-driven research, our
iterative framework could address long-standing challenges in restoration ecology, such as when selecting locally adapted geno-
types will aid translocation of plants and animals.
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Implications for Practice

• Genomic data will continue to become available for spe-
cies of conservation concern, including species targeted
for translocation efforts.

• While genomic data can identify local adaptations rele-
vant for spatially targeted translocation, ecological com-
plexity, including demographic structure and landscape
context, could undermine success of efforts based primar-
ily on genomics.

• Data on translocation outcomes, including population
size and genetic diversity, could be used to assess the pre-
dictive power of gene-by-environment interactions for
translocation success.

• Forecasting models that iterate between lab-based predic-
tions and field-measured outcomes will improve our
capacity to plan translocations using genomics data, but
we highlight continued challenges for these methods to
be widely applied.

Introduction

Translocation of plants and animals is central to efforts to restore
biodiversity. Species of conservation concern often face

inbreeding depression, reduced adaptive capacity, local extinc-
tions, and other consequences of small population sizes. How-
ever, despite decades of effort and enormous amounts of
funding spent on translocation efforts to combat these concerns,
success, characterized by establishing a self-sustaining, free-
ranging, viable population (Griffith et al. 1989; Fischer & Lin-
denmayer 2000), is notoriously unpredictable, and examples
of failure are common (Godefroid et al. 2011; Drayton &
Primack 2012; Cochran-Biederman et al. 2015). This lack of
consistent success has prompted efforts to better forecast out-
comes of translocations. Accurate forecasting ability is even
more critical as we enter an era of unprecedented climate
change; predicting species’ responses to shifting environmental
conditions is necessary for matching locally adapted popula-
tions to similar future conditions. As genome-wide sequence
data becomes increasingly available for non-model organisms
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due to rapid advances in DNA sequencing technologies, geno-
mic data could revolutionize translocation predictions and plan-
ning. Whole genome sequencing has the potential to enable
identification of local adaptations and to increase the number
of neutral markers available for population genetic analyses.
However, while predicting future translocation success is a pri-
mary goal of genome-wide sequencing for conservation, frame-
works to quantify how genomic differences impact population
growth rates of wild plants and animals remain scarce.

Translocation forecasts informed by genetic information
build off a successful track record of using population genetic

analyses to address questions in conservation biology either
before or after translocation (Boxes 1, 2). Genetic metrics used
to aid in selecting source populations, and post-translocation
monitoring, include genetic diversity, population structure,
inbreeding coefficients, and effective population size. For
instance, source populations for translocations are often
selected based on high levels of genetic diversity and moderate
levels of genetic similarity to the recipient population (IUCN/
SSC 2013; Houde et al. 2015). Genetic data collected prior to
translocations can be compared with post-translocation genetic
data to monitor post-translocation outcomes (e.g. Madsen
et al. 1999; McGlaughlin et al. 2002; De Barba et al. 2010).
However, post-translocation genetic monitoring is rare
(Weeks et al. 2011; Ewen et al. 2014) despite its strong
potential benefits.

Box 1 Pre-translocation data from common garden
experiments improve seed sourcing during sagebrush
restoration

Sagebrush plants from source 

populations throughout the Great 

Basin planted in a common garden 

experiment in Orchard, ID. Aerial 

photo courtesy of Donna Delparte. 

Big sagebrush (Artemisia tridentata) in the Great Basin pro-
vides an example of how pre-translocation data is being
applied to improve translocation success. A large-scale anal-
ysis of sagebrush reseeding treatments in post-fire rehabilita-
tion projects revealed that the majority of seeding treatments
failed to increase cover or density of sagebrush (Knutson
et al. 2014). One potential reason for this large-scale failure
is inappropriate seed sourcing (selecting from populations
which were not genetically adapted to the microclimates in
which they were seeded). Follow-up common garden studies
have shown that climate characteristics of source population
habitats can predict genetic compatibility with new locations
(Chaney et al. 2017). While understanding genomic adapta-
tion to specific climates in sagebrush can improve seed
sourcing, post-translocation monitoring will continue to play
a role in assessing translocation success beyond the common
garden. Iterative forecasting models which simulate individ-
uals could quantify the demographic benefits of local
adaptation for translocation in changing landscapes of the
American West.

Box 2 Post-translocation monitoring to detect
introgression between native and introduced trout species

St. Joe River, Idaho, USA. 

Westslope Cutthroat Trout from the 

Translocations of native trout species are ongoing to restore
genetic integrity after global introductions of Coastal Rain-
bow Trout (Oncorhynchus mykiss irideus). During Westslope
Cutthroat Trout (Oncorhynchus clarkii lewisi) translocation in
the American West, post-translocation genomic data provide
critical assessments of potential introgression. Fisheries scien-
tists use genomic data to quantify relationships between trout
stocking and hybridization, such as genome-wide selection
against introgression or introgression even after translocations
have been ended (Muhlfeld et al. 2015; Kovach et al. 2016).
By measuring hybridization rates at multiple time points,
researchers could use iterative forecasting models to predict
the levels of hybridization and outbreeding depression for
future translocation (or eradication) scenarios.

These forecasting models could be created by using
demo-genetic, individual-based models. Although this has
been done in the past with limited numbers of markers with
modeling frameworks like CDMetaPOP (see Nathan
et al. 2019), current expansions of modeling frameworks will
allow a greater number of loci to be used to increase statisti-
cal power for quantifying introgression, although pinpoint-
ing loci directly involved in inbreeding depression may still
be challenging (Kardos et al. 2016). This expansion to
modeling frameworks highlights the computational biology
needs to advance the incorporation of genomic data in
translocation forecasts.
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Whereas genetic analyses have traditionally used small num-
bers of genetic markers, rapid advancements in DNA sequenc-
ing technologies are dramatically increasing the accessibility
of data from thousands of genetic markers across the genome
(Allendorf et al. 2010; Andrews et al. 2016; Hohenlohe
et al. 2018). Using a large number of genetic markers substan-
tially increases the statistical power for population genetic ana-
lyses. In addition, genome-wide sequence data allow the
identification of genomic variants responsible for adaptation to
local habitats (Savolainen et al. 2013), and this information
can help predict whether individuals or populations will succeed
if translocated to a new habitat. Importantly, genomic data can
distinguish adaptations with a genomic basis from those result-
ing from phenotypic plasticity; adaptations with a genomic basis
are more likely to be predictive of long-term translocation
success (Aitken & Whitlock 2013).

We propose that existing models for biological complexity in
population dynamics of translocated plants and animals could
serve as an integrative framework for applying genomic data
to translocations. This review assesses the integration between

translocations and genomic data. We do this by (1) discussing
benefits for using genomic data with translocation events, both
before and after the event (“pre-translocation” and “post-translo-
cation”); (2) reviewing why translocations may fail when only
genomic data are incorporated in forecasting efforts; and
(3) arguing for the increased use of forecasting models that
incorporate genomic data to inform translocation efforts. We
use the broad term of “translocation” to encompass the concepts
underlying the wide range of translocation-related terms
currently in use (Table 1).

Review of Genomic Data in Translocation Efforts

Pre-Translocation Data

Neutral Loci. Neutral loci, which are genetic loci that do not
directly influence fitness, have informed translocation efforts
in multiple ways. First, neutral loci can delineate populations
to generate an understanding of population structure and con-
nectivity (Schwartz 2005; Greenwald 2010). Second, neutral

Table 1. Definitions of translocation-related terms.

Translocation Term Definition Source

Assisted gene
flow

Managed movement of individuals into populations to reduce local maladaptation to climate
of other environmental changes

Whiteley et al. (2015)

Human-mediated gene flow Allendorf et al. (2012)
The managed translocation of individuals within the current species range to facilitate rapid

adaptation to climate change
Aitken and
Whitlock (2013)

Assisted
migration

The intentional movement of species or populations, generally within their current range, in
response to observed or anticipated climate change

Ste-Marie et al. (2011)

Movement from historical range to new areas based on climate shift Aitken and
Bemmels (2016)

Genetic rescue An increase in population fitness (growth) owing to immigration of new alleles Whiteley et al. (2015)
The recovery in the average fitness of individuals through gene flow into small populations,

typically following a fitness reduction due to inbreeding depression
Allendorf et al. (2012)

Managed
relocation

An intervention technique aimed at reducing negative effects of climate change on defined
biological units such as populations, species, or ecosystems. It involves the intentional
movement of biological units from current areas of occupancy to locations where the
probability of future persistence is predicted to be higher

Richardson
et al. (2009)

Conservation
translocation

The movement of individuals from one population (or location) to another that is usually
intended to achieve either genetic or demographic rescue of an isolated population, or to
allow adaptation to a rapidly changing climate

Allendorf et al. (2012)

The intentional movement of living organisms from one area to another Seddon et al. (2007)
A general term of the transfer by human agency of any organism(s) from one place to another

(based on NCC 1990)
Hodder and
Bullock (1997)

The intentional release of animals to the wild in an attempt to establish, reestablish, or
augment a population and may consist of more than one release

Griffith et al. (1989)

Deliberate movement of organisms from one site for release in another; the human-mediated
movement of living organisms from one area, with release in another; the intentional
movement and release of a living organism where the primary objective is a conservation
benefit: this will usually comprise improving the conservation status of the focal species
locally or globally, and/or restoring natural ecosystem functions or processes

IUCN/SSC (2013)

Conservation
reintroduction

The introduction of a species or population into a historic habitat from which it had been
previously extirpated

Allendorf et al. (2012)

The intentional release of a species into its historical range where it has become extirpated.
Reintroduction is distinct from reinforcement, which involves translocation of organisms to
existing populations of the same species

IUCN/SSC (2013); He
et al. (2016)

The intentional movement and release of an organism inside its indigenous range from which
it has disappeared

IUCN/SSC (2013)
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loci provide information on overall genetic diversity, enabling
conservation biologists to target source populations to maximize
genetic diversity during translocation (Ottewell et al. 2014;
Pacioni et al. 2018). Third, neutral loci can estimate inbreeding
either directly or through estimates of effective population size
(Newman & Pilson 1997; Weeks et al. 2011). While most previ-
ous work has identified neutral loci using a relatively small num-
ber of markers (e.g. microsatellites), genomic methods can
identify thousands of genomic-wide markers, dramatically
increasing the statistical power of population genetic analyses
relevant for translocation.

Adaptive Loci. In contrast to neutral loci, adaptive loci repre-
sent areas of the genome directly related to fitness, including
reproduction and survival. Several approaches have been devel-
oped for using DNA sequence data to identify genomic adapta-
tion within individuals and populations, which can assist in
translocation decision-making. These approaches focus on iden-
tifying genomic regions associated with phenotypes or environ-
mental variables. Methods such as quantitative trait locus (QTL)
mapping (Stinchcombe & Hoekstra 2008) and genome-wide
association studies (GWAS; Korte & Farlow 2013) are consid-
ered top-down approaches that can identify regions of the
genome related to local adaptation by identifying associations
between genotypes and phenotypes. In contrast, FST outlier tests
identify locally adaptive genetic variants under divergent adap-
tive pressures by identifying genetic regions that differ in allele
frequencies between populations (Francois et al. 2016). This
contrasts with environmental associational analyses (EAAs),
which identify genetic variants strongly correlated with specific
environmental conditions using methods parallel to those for
identifying genetic variants associated with phenotypic traits in
QTL analyses (Rellstab et al. 2016). These methods help tie
identified loci directly to traits, which often may not be possible
for other methods which identify loci but do not determine the
translation of genotypes to phenotypes. Methods to identify loci
associated with environmental conditions can be either multi-
variate, such as redundancy analysis (Forester et al. 2018), or
univariate, such as latent factor mixed models (Frichot
et al. 2013), and many EAA methods explicitly control for neu-
tral population genetic structure (Rellstab et al. 2016). Often
multiple methods are used for identifying adaptive loci, and
researchers focus downstream analyses on loci that are found
to be significant across multiple methods (Dorant et al. 2020;
Massatti & Knowles 2020).

Incorporation of adaptive genomic variation into manage-
ment decision-making is a relatively new endeavor, and best
practices remain the subject of discussion and debate (Funk
et al. 2019; Hoelzel et al. 2019). For example, genomic signa-
tures of adaptation can be difficult to distinguish from genomic
signatures of drift or purifying selection, or could have resulted
from historic environmental conditions that have since disap-
peared; in these cases, loci exhibiting genomic signatures of
adaptation may not be useful for management decision-making
(Kardos & Shafer 2018). Nonetheless, molecular and analytical

tools for identifying and understanding adaptive genomic varia-
tion are rapidly advancing, and incorporation of adaptive geno-
mic information is increasingly being recognized as a valuable
tool for translocations and other management applications
(Funk et al. 2019). For example, Shryock et al. (2017) used a
combination of EAAs and FST outlier tests to identify genetic
loci associated with climate covariates for two desert shrub spe-
cies of high restoration value. This information was used to
develop models for defining the areas where seeds are collected
for translocation (“seed source zones”) to facilitate seed collec-
tion. Similar genomic approaches have identified genetic loci
associated with climate covariates in tree species of conserva-
tion interest (Steane et al. 2014; Martins et al. 2018). Whole-
genome sequences have also identified genetic loci associated
with local adaptation in animal species, including pinpointing
the most adapted individuals of Gunnison and Greater Sage-
Grouse populations for spatially targeted translocation
(Oh et al. 2019).

Post-Translocation Data

Neutral Loci. Comparisons of genetic diversity before and
after translocations can be used to evaluate translocation suc-
cess. Applications include assessing the short-term success of
translocations to supplement declining and inbred populations
by quantifying whether translocation increased genetic diversity
(Madsen et al. 1999). Comparing neutral markers between his-
torical and contemporary populations can reveal long-term costs
and benefits of translocation efforts. For example, neutral loci
were used to demonstrate that admixture between wild popula-
tions and translocated hatchery fish has likely resulted in declin-
ing genetic diversity in brown trout (Salmo trutta) populations
(Hansen et al. 2009). Post-translocation monitoring of genetic
diversity can also inform the design of future translocation
efforts by establishing thresholds for the minimum population
size needed to maintain genetic diversity (McGlaughlin
et al. 2002). Analysis of genome-wide sequence data will enable
rapid identification of declining genetic diversity in threatened
populations (i.e. genetic erosion). New metrics are in develop-
ment to quantify genetic erosion, such as analyses of runs of
homozygosity (ROH; Leroy et al. 2018). ROH can potentially
reveal early signs of inbreeding within populations with higher
precision than traditional microsatellite markers (Leroy
et al. 2018). Overall, post-translocation analyses can inform res-
toration practitioners about the genetic state of translocated
populations with concrete recommendations and lessons for
future interventions (Fant et al. 2013).

Pedigree assignments based on genetic data can also be ben-
eficial for monitoring newly established populations. For exam-
ple, multi-year post-translocation monitoring of a reintroduced
brown bear population in the Italian Alps revealed that one dom-
inant male had sired all cubs born within the last 4 years, leading
to increased relatedness and decreased genetic diversity in the
population (De Barba et al. 2010). Without genetic monitoring,
this reintroduction effort would have been deemed a success
based solely on the population’s increased size. Pedigree ana-
lyses based on genetic data have also been used to monitor
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reintroduction efforts for gray wolves (Stenglein et al. 2011) and
Columbia Basin pygmy rabbits (DeMay et al. 2017). Pedigree
analysis methods also have promise for selecting which individ-
uals to breed to minimize relatedness (Galla et al. 2020).

Adaptive Loci. Adaptive loci have been used much less fre-
quently to monitor post-translocation events than in the pre-
translocation planning process (Table 2). These markers may
allow future monitoring to look for adaptive divergence com-
pared to the source populations. In addition, adaptive loci could
be used to monitor adaptive changes within the new population
through time.

What Factors Could Undermine Forecasts Informed
by Genomic Data?

Demographic Structure

Genomic predictions that do not take demographic structure into
account could have poor predictive ability. Populations of plants
and animals typically consist of individuals at varying stages of
the life cycle, including different sizes, stages, and ages. Conser-
vation biologists have long recognized that demographic struc-
ture can interact with population dynamics with significant
consequences for management interventions (Caswell 2000).
For similar reasons, reintroduction efforts that focus on

translocating small individuals (e.g. seedlings or fish fry) may
appear to fail for up to several decades while larger individuals
establish (Shriver et al. 2019). The age distribution of translo-
cated individuals also has a strong impact on population growth
(Linklater et al. 2011; Shier & Swaisgood 2012), as does the sex
of translocated individuals, since sex ratio and breeding systems
interact with population dynamics (Bosé et al. 2007). Signals of
local adaptation may also be more strongly expressed in traits at
certain life history stages, with consequences for population
dynamics in heterogeneous environments (Rice & Knapp
2008; Rees & Ellner 2016). The importance of demographic
structure for population dynamics points to the need to consider
genomic differences in the context of organism life cycles.

Barriers to Movement

Genomic-informed predictions that do not account for land-
scape context and configuration could also have poor transloca-
tion success rates. Geographic barriers to movement are
ubiquitous, and translocation decisions that assume individuals
will disperse freely could have unexpected outcomes. Human-
made structures (e.g. highways; De Barba et al. 2010) can act
as connectivity barriers for reintroduced populations. Natural
landscape features can also limit gene flow in reintroduced
populations; for example, microsatellite analyses revealed that
historical translocation of fishers (Pekanina pennanti), a carniv-
orous mustelid, in the Northeast was impeded by lakes

Table 2. Examples of forecasting models with genomic data. Pre-translocation studies include papers where translocation was not always the stated goal.

Biological Process Type of Model Genomic Data Inputs Additional Data Inputs
Pre- or Post-
Translocation Reference

Local adaptation and
gene flow

Dispersal Simulated adaptive loci Biophysical
environmental
characteristics

Pre Quigley
et al. (2019);
Dudas
et al. (2017)

Local adaptation and
complex
demographics

Logistic growth
model

Adaptive loci Demographics,
temperature, artificial
migration

Pre Bay et al. (2017)

Gene flow Dispersal Simulated neutral
chromosome

Post Rougemont
et al. (2019)

Local adaptation Source suitability
decision
framework

Neutral loci Abundance, habitat
suitability

Pre Malone
et al. (2018)

Local adaptation and
complex
demographics

Individual-based
model

Adaptive and neutral loci Demographics, habitat Either Hogg (2020)

Local adaptation Species
distribution
model

Relate locally adapted
genotypes to
environmental variation

Abundance or
occurrence of species
in environment

Pre Jonsson
et al. (2018)

Local adaptation Gradient forest
regression

Adaptive loci Environmental
associations

Pre Bay et al. (2018)

Complex
demographics

Stage or size-
structured
population
model

Genetic polymorphism Data on stage-specific
vital rates

Either de Vries and
Caswell (2019)

Complex
demographics

Integrated
population
model

Could incorporate
individual-level variables

Flexible; can
incorporate multiple
types of data

Post Plard et al. (2019)
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(Hapeman et al. 2011). In addition, translocated individuals may
move and respond to potential barriers differently than non-
translocated individuals (Jesmer et al. 2018). In some cases, bar-
riers that prevent gene flow can benefit translocation if barriers
prevent introgression, the breeding of related taxa through
hybridization (Harig et al. 2000).

Introgression

Introgression is another factor that could impede translocation
success and planning by leading to rapid evolutionary changes,
including genetic and phenotypic feedbacks (Brasier 2001;
Dierking et al. 2014). For example, two species of Indian paint-
brush, Castilleja levisecta, a federally threatened species, and
Castilleja hispida, the host plant for a federally endangered
butterfly, Euphydryas editha taylori, were accidentally planted
in close proximity on prairie restoration sites in western
Washington, leading to concerns over hybridization and
ultimately the removal of some translocated individuals
(Dunwiddie & Martin 2016). While introgression can under-
mine efforts to restore native populations, introgression can also
have negative impacts on fitness (e.g. Muhlfeld et al. 2009; but
see Frankham 2015). The likelihood of introgression, and its
associated eco-evolutionary feedbacks, can be unpredictable,
necessitating data-driven approaches to quantify hybridization.

Iterative Forecasting Models to Improve
Translocations

Demographic structure, barriers to movement, introgression,
and a myriad of other complications are likely to undermine
forecasts of reintroduction success based primarily on genomic
data. These factors raise the question of how to develop predic-
tions of reintroduction success that integrate genomic data yet
acknowledge ecological complexity. In other areas of science,
model-based forecasts of future events play a major role in plan-
ning and decision-making (e.g. weather forecasts). Ecological

forecasts are also under development, aided by recent efforts
to evaluate ecological models in the context of how well models
can extrapolate beyond the range of data used for model-fitting
(Dietze et al. 2018). Integrating multiple sources of data, such
as the potential performance of organisms under a range of envi-
ronmental conditions and time series of population abundance,
will play a key role in developing forecasting models. For exam-
ple, adaptive genomic-based predictions of heat tolerance could
be used to develop a model to predict organismal abundance,
and then independent field data on abundance could provide a
test of model predictions (Fig. 1). With the increasing availabil-
ity of existing genetic, environmental, and other data, along with
increasing availability of novel genomic data, we are well-
poised to develop forecasting models that iterate between model
development and model testing (Draper et al. 2019).

Modeling Demographic Structure

Demographic models for conservation biology enable variation
in stage, size, and age structure with potential to interact with
local adaptation (Caswell 2000). Models that include demo-
graphic structure are necessary for long-term forecasts
(Caughlin et al. 2014, 2019) and can also produce more detailed
recommendations for management, such as targeting particular
demographic classes for management action. Incorporating
genotypic variation as a source of phenotypic variation into pop-
ulation demographic models will lead to novel insights into eco-
evolutionary dynamics with application to reintroduction
(Metcalf & Pavard 2007). For example, demographic models
that incorporated bodyweight (a metric of demographic struc-
ture) and a gene with two alleles that determine coat color were
used to forecast the response of reintroduced wolf populations to
environmental change (Coulson et al. 2011). Demographic
structure is likely to be most important when there is an interac-
tion between genotype and individual stage, size, sex, or age, in
determining demographic rates, or when one stage is a demo-
graphic bottleneck (Easterling et al. 2000). Incorporating

Figure 1. Conceptual diagram of genomic integration with iterative translocation forecasting models. Data below provide one example of several types of
relevant data.
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measurements of demographic structure in pre-translocation
data collection (e.g. measuring plant size in greenhouse experi-
ments to determine the relationship between plant size and adap-
tation to stress) and post-translocation data on organismal
abundance will aid our ability to develop forecasting models that
include demographic structure.

Modeling Barriers to Movement

Spatially explicit models can further advance translocation plan-
ning and monitoring. Ensuring the translocated populations
maintain connectivity with remnant populations is a strong
foundation for successful restoration projects (Aavik &
Helm 2018). Dispersal is a fundamental component of genetic
connectivity that can readily be included in spatially explicit
modeling and forecasting frameworks (Lethbridge &
Strauss 2015; Landguth et al. 2017). Furthermore, incorporating
genetic structure and gene flow into these frameworks, along
with individual dispersal, can help improve the predictions of
long-term population viability (Godefroid et al. 2011). Several
modeling frameworks, including mechanistic dispersal kernels
and spatiotemporal models, can account for spatial and temporal
processes post-translocation. For example, spatial reaction–
diffusion models (e.g. Wright-Fisher equation), originally
developed to model the spread of new alleles in a population,
can represent both genetic and demographic diffusion
(Roques et al. 2016; Hefley et al. 2017; Bergman et al. 2018).
Modeling advection processes, including animal movement,
can account for habitat heterogeneity in recovering landscapes
(Moorcroft & Barnett 2008). When confronted with pre- and
post-translocation genomic and spatial population data collected

over time, such models represent a rigorous framework for fore-
casting population persistence under novel biotic and abiotic
regimes.

Modeling Introgression

Modeling introgression with genomic data in tandem will also
increase the success of translocation efforts. Introgression can
have a wide array of impacts on survival and reproductive suc-
cess (Baack & Rieseberg 2007; Colella et al. 2019) and is often
considered in translocation planning (González-Trujillo
et al. 2012; Meek et al. 2014). Genomic data provides increased
power for detecting and quantifying introgression, and also
enables assessment of whether selective pressures cause certain
parts of the genome to introgress more or less than others
(Rosenzweig et al. 2016; Martin & Jiggins 2017). This increase
in power has allowed previously unknown introgression to be
discovered (Twyford & Ennos 2012; Liu et al. 2015). In other
cases, introgression levels have been lower than previously esti-
mated (Hohenlohe et al. 2013). As more information regarding
rates and prevalence of introgression become available, there
will be increasing opportunities for modeling population-level
consequences of introgression. Although evaluating introgres-
sion with translocations may be common, it is less common to
use modeling to predict outcomes of translocations regarding
introgression (but see Colella et al. 2019; Jager 2006). Depend-
ing on the translocation project’s goals, maintaining desired
introgression levels would benefit from an iterative modeling
approach, including pre-translocation predictions and post-
translocation data on temporal samples of introgression occur-
rence. Eco-evolutionary models could also represent population

Figure 2. Example of pre- and post-translocation workflow integrating genomics into population models to maximize success. Thirty populations of a fish
species from across an environmental gradient are in consideration for a translocation event to a site where the population of that species has been extirpated.
Managers aim to choose fish for translocation that will lead to the establishment of a self-sustaining, viable population.
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dynamic changes that result from the introduction of adaptive
loci through introgression (Hedrick 2013; Frankham 2015).

Creating Forecasting Models With Genomics: Two Approaches

We present two approaches for integrating genomic data into
forecasting models. The first approach involves a two-step pro-
cess, which begins with conducting genomic analyses to deter-
mine inputs for population models (Fig. 2). Individual-based
models provide an example of a population model capable of
simulating the genomic composition of multiple loci and indi-
viduals. However, individual-based models do not all allow
for the large number of putatively adaptive loci that often
emerge from empirical genomic work, and instead simulate only
a few adaptive loci (Table 2). In contrast, the incorporation of
many neutral loci is more common across modeling frame-
works. There are some exceptions; CDMetaPOP was recently
expanded to allow for multilocus selection using a linear addi-
tive selection model for genotype-environment interactions
which can account for many adaptive loci in addition to neutral
loci (Landguth et al. 2020). HexSim can handle any number of
neutral loci (Schumaker & Brookes 2018). RangeShifter has
also recently had its modules expanded to handle pleiotropy
and more complex genomic data (Bocedi et al. 2020). Neverthe-
less, selecting appropriate loci from full genome sequencing for
simulation models remains a challenge. One potential solution is
to reduce the dimensionality of genomic data using indices
derived from multivariate ordination techniques, such as PCA
(e.g. Milesi et al. 2019).

A second approach for integrating genomics into population
models could involve jointly estimating regions of the genome
important for near-term population dynamics and individual or
population-level demography. Demographic models that incor-
porate functional linear models or universal differential
equations can accommodate a large number of predictors (Rack-
auckas et al. 2020). For example, Teller et al. (2016) demon-
strated how a suite of climate observations can be integrated in
time into a function-valued covariate to explain plant growth.
Analytically tractable population models that are generated from
regression-type statistical models (e.g. integral projection
models; Rees & Ellner 2016) present one opportunity to incor-
porate genomic information, estimated from functional linear
models or random forest algorithm, into population growth rate.
While this type of model has not yet been implemented,
single-step approaches to fit genomics-informed population
models will benefit from the rapidly developing field of
multidimensional data analysis.

Model Complexity and Future Prospects

An appropriate model type for genomics-informed transloca-
tions and forecasting remains an open question. The answer will
likely depend on the attributes of the ecological system andman-
agement goals, with pre- and post- translocation data being a key
component of the conservation strategy. To begin the process,
we recommend collaboration between ecological modelers and
conservation practitioners to work through the process of

developing the models. A wide range of models could forecast
translocation outcomes (e.g. genetic diversity or abundance)
from simple reaction–diffusion equations to complicated
individual-based models that represent heterogeneity across
scales (Table 2). Model choice is guided in part by available
data. For example, a complicated individual-based model may
be less appropriate if most parameters are unavailable
(e.g. dispersal rates and connectivity). At a minimum, forecast-
ing models for translocation should include the predicted abun-
dance of a species post-translocation. Other key details may
include spatial patterns in abundance and the relative frequency
of different genotypes. Demographic mechanisms, including
dispersal and age- or size-structured vital rates (growth, sur-
vival, and reproduction), are central to modeling population
dynamics of many plants and animals. Some of these model
types (e.g. matrix population models) have a long history in con-
servation biology but have not yet been used as a testing ground
for the impacts of genomic differences. Other model types have
played an important role in understanding eco-evolutionary
dynamics in simplified conditions (e.g. individual-based
models), but may present computational challenges when fore-
casting translocation outcomes over large geographic areas
(Romero-Mujalli et al. 2019).

While models present a valuable tool to forecast the success
of translocation efforts, there are hard limits to the complexity
that can be included in models. More complicated modeling
approaches face limits related to data availability and computing
processing power (e.g. Christin et al. 2019). One approach is to
create multiple models, potentially of different types, to repre-
sent different hypotheses and predictions to be evaluated. Model
selection could then enable evaluation of this suite of models.
The most rigorous test for model performance involves out-of-
sample testing on different sites, time periods, or species
(Roberts et al. 2017). The need for out-of-sample model predic-
tion provides a ready avenue for integrating data collected
before and after a translocation event (Boxes 1, 2). A transdisci-
plinary collaboration that brings together data streams from
mechanistic experiments and long-term observational data,
including agency partners, will play a key role in the iterative
development of forecasting models.

One critical step after creating and evaluating the models is to
take an iterative approach of adding new data and re-evaluating
models through time (Fig. 1). This approach can take multiple
forms and will help improve predictions. First, by collecting
new data after the translocation event, parameters for the species
in that location can be refined. For example, due to unforeseen
relationships with the environment, it is possible that the original
demographic parameters estimated from the source population,
such as survivorship, may not accurately reflect the new loca-
tion. Second, besides refining with new data measured at the
site, improved public data may become available, such as
refined down-scaled climate forecasts in the region. Third, the
iterative framework may allow researchers to continually adjust
and refine models based on any adaptive management actions
occurring within the region of the new population.

Here, we highlighted the influence of demographic structure,
introgression, and dispersal on translocations; however, these
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factors represent only a few potential complications genomic-
informed forecasts of translocation could encounter. Other
factors include habitat similarity between source and
translocation sites (e.g. Wiedmann & Sargeant 2014; Batson
et al. 2015), source-sink dynamics, and anthropogenic effects
(Menges 2008). Accordingly, most management decisions
regarding translocations take multiple factors into account,
from community composition to landscape context. These dif-
ferent factors can interact in complex ways, making predictions
of translocation success challenging and weakening or even
reversing outcomes from those predicted primarily on geno-
mics. An iterative modeling framework that tests inclusion of
these additional factors will be essential for determining which
factors are essential for accurate forecasts.

Conclusion

Forecasting is necessary to maximize translocation efforts for
the persistence of new and established populations, and in the
face of rapid, anthropogenic environmental change, the need
to move organisms along the landscape will increase. Although
there is a rich history of forecasting prior to translocations
(Converse et al. 2013), there are few examples of incorporating
genomic data in those models. Here we provided guidance on
the (1) available genomic metrics; (2) limitations to genomic
data; and (3) an overview of a conceptual framework and empir-
ical examples that could integrate genomics with data on popu-
lation dynamics. Iteration between models and data, including
forecasting outcomes from pre-translocation data and re-
evaluating models in light of post-translocation data, is the most
important component of our proposed framework. Previous
researchers have argued for iterative modeling during popula-
tion viability analyses, where simulations are re-run as new
empirical data become available (McCarthy et al. 2001). The
difficulty with long-term data collection is often the lack of
resources or motivation for monitoring after translocation
events. The great benefit of continued data collection is the
enablement of adaptive management, including learning from
iterative modeling, that could improve translocation outcomes
in a changing world.
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