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Abstract

Understanding the genetic basis of disease-related phenotypes, such as cancer susceptibility, is crucial for the advancement of

personalized medicine. Although most cancers are somatic in origin, a small number of transmissible cancers have been docu-

mented. Two such cancers have emerged in the Tasmanian devil (Sarcophilus harrisii) and now threaten the species with extinction.

Recently, casesof natural tumor regression in Tasmanian devils infectedwith the clonally contagious cancer have beendetected. We

used whole-genome sequencing and FST-based approaches to identify the genetic basis of tumor regression by comparing the

genomes of seven individuals that underwent tumor regression with those of three infected individuals that did not. We found three

highly differentiated candidate genomic regions containing several genes related to immune response and/or cancer risk, indicating

that the genomic basis of tumor regression was polygenic. Within these genomic regions, we identified putative regulatory variation

in candidate genes but no nonsynonymous variation, suggesting that natural tumor regression may be driven, at least in part, by

differential host expression of key loci. Comparative oncology can provide insight into the genetic basis of cancer risk, tumor

development, and thepathogenicityof cancer, particularlydue toour limitedability tomonitornatural, untreated tumorprogression

in human patients. Our results support the hypothesis that host immune response is necessary for triggering tumor regression,

providing candidate genes that may translate to novel treatments in human and nonhuman cancers.
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Introduction

Identifying the genetic basis of complex phenotypes is a cen-

tral goal of modern biology because 1) many fundamental

aspects of evolution, such as pleiotropy (Wagner and Zhang

2011), result from the genotype–phenotype relationship

(Stadler et al. 2001; Hansen 2006); 2) our ability to ultimately

predict evolution depends on understanding these

evolutionary dynamics; and 3) characterizing the genetic basis

of complex traits, particularly disease-related traits such as

cancer risk (Altshuler et al. 2008; Saadatpour et al. 2015), is

of critical importance for conservation and medicine (Harold

et al. 2009; Daub et al. 2013; Albert and Kruglyak 2015;

Campbell et al. 2017; Margres et al. 2018). Indeed, under-

standing the genotype–phenotype relationship is crucial for
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both assessing disease risk and developing personalized pre-

vention and treatment (Katsios and Roukos 2010; Weller et al.

2010; Chin et al. 2011; Freedland 2018). Genomic advances

have enabled the identification of loci associated with onco-

genesis, tumor progression, and even cancer regression and

spontaneous remission (Phan et al. 2003; Yard et al. 2016;

Garcia-Hernandez et al. 2017; Tran et al. 2017; Kumar-Sinha

and Chinnaiyan 2018). Comparative oncology should provide

insight into the genetic basis of cancer risk, tumor develop-

ment, and the pathogenicity of human cancers, particularly

due to our limited ability to monitor natural, untreated tumor

progression in human patients for obvious ethical considera-

tions (Khanna et al. 2006; Schiffman and Breen 2015;

Millanta et al. 2016).

Most cancers are somatic in origin, but a few transmissible

cancers have been documented (reviewed in Ostrander et al.

2016). Such cancers are rare, with the only natural cases

found in dogs (canine transmissible venereal tumor or

CTVT; Murgia et al. 2006), bivalves (Metzger et al. 2016),

and the Tasmanian devil (devil facial tumor disease or DFTD;

Pearse and Swift 2006; Pye et al. 2016). Yet within these

species, six transmissible cancers have recently been discov-

ered (i.e., several in bivalves and a second in Tasmanian devils;

Metzger et al. 2016; Pye et al. 2016), suggesting that these

types of cancers may be more common than previously

thought. Unlike dogs and bivalves, the Tasmanian devil

(Sarcophilus harrisii) is threatened with extinction by the emer-

gence of two clonally transmissible cancers (Hawkins et al.

2006; Murchison et al. 2012; Pye et al. 2016; Stammnitz

et al. 2018; Storfer et al. 2018). Devil facial tumor disease 1

and 2 (DFT1 and DFT2, respectively) are contagious tumor cell

lines and spread via biting, which is common during social

interactions (Hamede et al. 2013). DFT1 was first discovered

in northeastern Tasmania in 1996 and has since spread more

than 80% of the way across the island, causing significant

population declines (McCallum 2008; McCallum et al. 2009).

DFT2 was discovered in 2014 and is currently restricted to a

small region of southeastern Tasmania (Pye et al. 2016).

Although comparatively little is known about DFT2 relative

to DFT1, the tumors are histologically, cytogenetically, and

genetically distinct despite gross morphological similarities

and are of independent origin (Pye et al. 2016; Stammnitz

et al. 2018).

Low devil genetic diversity (Miller et al. 2011; Hendricks

et al. 2017) and silencing of cell surface MHC molecules by

DFTD have putatively led to universal susceptibility and

�100% mortality (Siddle et al. 2013). Yet all devil populations

continue to persist, suggesting that devils are responding to

DFTD (Jones et al. 2008; Lazenby et al. 2018). Recent

work in devils has found evidence of an immune response

to DFT1 (Pye et al. 2016), rapid evolution in genes related

to immune function and cancer risk following disease ar-

rival (Epstein et al. 2016), and few loci of large-effect un-

derlying disease-related phenotypes such as survival

following infection (Margres et al. 2018). Collectively,

these studies suggest the evolution of resistance and/or

tolerance to DFT1 in devils.

Recently, natural (i.e., unmedicated) tumor regression has

been detected in northwestern Tasmania (fig. 1; Pye et al.

2016; Wright et al. 2017). In these cases, devils with previ-

ously confirmed DFT1 were recaptured with either substantial

tumor shrinkage or entire disappearance of the tumor. Recent

work on CTVT regression (which, unlike in DFT1, is common)

has shown that host response plays a critical role in triggering

tumor regression (Frampton et al. 2018), suggesting that

DFT1 regression may also be driven by the devil immune sys-

tem. Wright et al. (2017) recently used whole-genome se-

quencing (WGS) and a genome-wide association (GWA)

approach to compare the genomes of six devils with

regressed tumors to the genomes of five devils with

nonregressed tumors. Despite significant statistical limita-

tions due to unavoidable sample size limitations (i.e., re-

gression is a rare, novel phenotype), Wright et al. (2017)

found evidence that loci involved with angiogenesis may

be associated with tumor regression. Although GWA

methods are a classical approach for identifying the ge-

nomic basis of variation in disease phenotypes, these

studies often require several thousand samples to attain

appropriate statistical power (Yang et al. 2015). Even for

species such as S. harrisii with small populations and

strong linkage disequilibrium (Epstein et al. 2016), many

more than a dozen samples are needed to reliably detect

variants of an appreciable effect in a case–control GWA

framework (Kardos et al. 2016; Margres et al. 2018).

Furthermore, Frampton et al. (2018) showed that tumor

regression in CTVT is polygenic and driven by several

genes, most notably cyto/chemokines involved with in-

flammation and interferon signaling. Wright et al.

Fig. 1.—Sampling of Sarcophilus harrisii. We collected tissue samples

from seven individuals that underwent tumor regression and three indi-

viduals that did not for whole-genome sequencing. Sampling region as

well as the sites of discovery (i.e., putative sites of origin) for DFT1 and

DFT2 are indicated in the inset.
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(2017), however, looked at significant associations for in-

dividual SNPs and indels. Although methods for incorpo-

rating gene set analyses and other polygenic approaches

into a GWA framework exist (Mooney et al. 2014), these

models also require many more than a dozen samples

(Chatterjee et al. 2013), thus precluding their use for in-

vestigating the genetic basis of tumor regression in

Tasmanian devils.

We therefore used WGS and FST-based approaches to

compare the genomes of seven individuals that underwent

tumor regression (i.e., cases) with those of three infected

individuals that did not (i.e., controls) to identify the genetic/

polygenic basis of natural tumor regression in Tasmanian dev-

ils. We approximately doubled the genome coverage of

Wright et al. (2017; 10–15� to 20–30�) and genotyped

SNPs, indels, and larger structural variants (SVs) for each indi-

vidual; the latter were not previously investigated. Genomic

instability has repeatedly been shown to be important in

many human cancers (e.g., Hartwell 1992; Akagi et al.

2014) as well as in DFT1 and DFT2 (Deakin et al. 2012;

Murchison et al. 2012; Pye et al. 2016; Stammnitz et al.

2018). SVs in the human genome, however, can also be

associated with disease susceptibility (Tuzun et al. 2005;

Manolio et al. 2009) and may have a higher probability,

relative to SNPs, of affecting phenotypes (Cooper et al.

2007). We used these three classes of genetic variation to

characterize the polygenic basis of tumor regression by

identifying large candidate genomic regions and particu-

lar biological pathways that differentiated cases and con-

trols. Previous work suggested that loci involved with

angiogenesis (Wright et al. 2017), chemokine signaling

(Frampton et al. 2018), and cell adhesion (Epstein et al.

2016; Margres et al. 2018) may be important to tumor

regression/devil response to DFT1. Frampton et al. (2018)

also showed that the differential expression of key genes

leads to CTVT regression, and the predominance of ex-

pression differentiation underlying rapid, adaptive

responses has been documented in humans (Fraser

2013) and other systems (Konczal et al. 2015; Margres

et al. 2017). We therefore predicted that loci involved

with one or more of these pathways would be highly dif-

ferentiated between cases and controls, and that this dif-

ferentiation would be biased toward putative regulatory

rather than protein-coding regions. Although transcrip-

tomics is most often used to identify differential gene ex-

pression and regulatory variation (Morandin et al. 2016;

Breschi et al. 2017; Rokyta et al. 2017), serial sampling of

devil tissue pre and postregression was not feasible due to

the stochasticity of recapture events. We therefore iden-

tified significantly conserved noncoding sequences across

devils and other mammals as putative regulatory ele-

ments. We then mapped highly differentiated variants

to these regions to identify putative regulatory variation

underlying the regression phenotype.

Materials and Methods

Sampling and WGS

We sequenced the genomes of ten S. harrisii from northwest-

ern Tasmania (fig. 1). All devils were confirmed to have DFT1.

Seven of these individuals (six females, one male) exhibited

tumor regression (i.e., cases), and three individuals (one fe-

male, two males) did not (i.e., controls). Individuals were clas-

sified as possessing the regression phenotype if tumor volume

decreased�15% of the initial tumor volume upon recapture.

Genomic DNA was extracted from ear biopsies. Whole-

genomes for each individual were sequenced 150 bp

paired-end on an Illumina HiSeq X platform to �30� cover-

age. Sequencing was performed at the Northwest Genomics

Center at the University of Washington (Seattle, Washington,

USA) and GENEWIZ (South Plainfield, New Jersey, USA). All

raw data were deposited in the Sequence Read Archive (SRA)

under BioProject PRJNA450403 and accessions SRR7015138,

SRR7015139, SRR7015141–SRR7015147, and SRR7015149.

Alignments and Variant Calling

We merged raw reads with FLASH2 (Magno�c and Salzberg

2011) and trimmed with Sickle (Joshi and Fass 2011). We then

aligned merged and unmerged reads to the reference ge-

nome (downloaded from Ensembl January 2016; Murchison

et al. 2012) using the BWA-MEM algorithm (Li and Durbin

2009). We identified SNPs and indels using HaplotypeCaller in

GATK (McKenna et al. 2010; DePristo et al. 2011) as previ-

ously described (Margres et al. 2017). We identified

2,822,764 and 1,194,776 raw SNPs and indels, respectively.

Raw variants were filtered in VCFtools (Danecek et al. 2011)

and were required to possess a minimum depth value of 15 as

well as a minimum genotype quality of 60. Following filtering,

the final SNP and indel data sets contained 1, 271, 835 and

281, 046 variants, respectively.

Identifying the Genomic Basis of Tumor Regression

We used the Genotype Phenotype Association Toolkit

(GPATþþ) from the vcflib package (Garrison 2012) as previ-

ously described (Domyan et al. 2016) to identify case–control

genomic differentiation. To avoid the high false positive rate

inherent to any FST-based outlier detection approach using

small sample sizes (Lotterhos and Whitlock 2015; Verity

et al. 2017), we used the segmentFst function from

GPATþþ to identify candidate genomic regions with contin-

uous, elevated FST values relative to the surrounding genome

(Domyan et al. 2016); we were much less likely to find highly

differentiated, large genomic regions encompassing many

variants through sampling error than single variants spread

across the genome. We used this approach to identify candi-

date genomic regions using the SNP and indel data indepen-

dently. Differentiation was visualized as a Manhattan plot

using the pFst function from GPATþþ (Garrison 2012). pFst
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uses a likelihood ratio test for allele frequency differences

between case–control groups while incorporating geno-

type likelihood information to account for potential se-

quencing error. SNPs and indels in candidate genomic

regions were characterized using variant effect predictor

(VEP; McLaren et al. 2016) and the reference genome

(downloaded from Ensembl January 2016; Murchison

et al. 2012). Each variant was classified as intergenic,

intronic, synonymous, nonsynonymous, being in an

untranslated region (UTR), or upstream or downstream

of a particular gene (i.e., �5 kb of the coding sequence).

We used GeneCards (www.genecards.org; Stelzer et al.

2016) to identify putative gene functions.

Identifying Structural Variation

We used Manta (Chen et al. 2016) to identify SVs in the ten

individual genomes. Manta uses paired and split-read evi-

dence to identify large indels, inversions, duplications, and

translocations. We ran a joint diploid sample analysis across

all individuals and identified 79,453 variants that passed de-

fault Manta filters. We then calculated Weir and Cockerham’s

FST (h; Weir and Cockerham 1984) to compare differentiation

between cases and controls for each variant. Because the

reference genome has only been assembled into �36,000

scaffolds (Murchison et al. 2012) and contains many missing

base pairs, more than half of the identified large indels

mapped to these regions and were, therefore, false positives.

We manually removed variants that mapped to regions of the

reference genome with�50% N’s. We then took the remain-

ing top 0.1% of SVs (segmentFst did not identify any differ-

entiated genomic regions in this data set; data not shown)

and required a minimum phred-scaled quality score of 999.

This conservative approach identified 35 top SVs that passed

all filters.

Detecting Polygenic Selection

Because conventional methods such as integrated haplotype

score and derived intra-allelic nucleotide diversity have little

power to detect signatures of polygenic adaptation (i.e., small

allele frequency changes at many loci; Fagny et al. 2014), we

used Weir and Cockerham’s FST (h; Weir and Cockerham

1984) to compare differentiation between cases and controls

for six pathways (Power et al. 2017) relevant to cancer risk

and DFT1 response. We used one-sided Mann–Whitney U

tests to compare the level of case–control differentiation in

a given biological pathway to that of the rest of the genome

as previously described (Hsieh et al. 2016). Pathways exhibit-

ing greater differentiation than the genomic background may

be evolving under positive selection. We examined six biolog-

ical pathways previously shown to be associated with DFTD

response and/or cancer-related traits: Cell adhesion (Epstein

et al. 2016; Margres et al. 2018; n¼ 2442 genes), apoptosis

(n¼ 115; Epstein et al. 2016), cancer (n¼ 229; Rosenberg

et al. 2008), graft-versus-host (n¼ 13; Rosenberg et al.

2008), chemokine signaling (n¼ 79; Frampton et al. 2018),

and vascular endothelial growth factor signaling (n¼ 40;

Wright et al. 2017). Genes for each pathway were identified

in the Kyoto Encyclopedia of Genes and Genomes (KEGG;

Kanehisa and Goto 2000). All variants within 5 kb of the

coding-region of a gene were listed as a pathway variant.

SNPs and indels were analyzed independently. All genes

and pathways are provided in supplementary table S1,

Supplementary Material online.

Identifying Regulatory Regions from Whole-Genome
Sequences

To determine if candidate variants occurred in putative regu-

latory regions, we used gVISTA (Couronne et al. 2003) and

RankVISTA to identify conserved noncoding sequences (CNS)

across devils and humans. RankVISTA uses the Gumby algo-

rithm to estimate neutral evolutionary rates from nonexonic

regions in the alignment and identify statistically significant

segments that evolve more slowly than the background; phy-

logenetically weighted log-odds conservation scores of con-

served segments are translated to P-values using Karlin-

Altschul statistics (Martin 2004). The human genome (NCBI

v36.1, hg18, March 2006) was used as the reference for all

analyses. Identified CNS represent putative regulatory ele-

ments. We used a RankVISTA threshold of 0.5, a calculation

window of 100 bp, and limited these comparisons to the can-

didate genomic regions identified in our segmentFst analyses

described above. Candidate genomic regions that occurred

on scaffolds that did not contain annotated coding sequences

were excluded. For the shared SNP/indel candidate regions,

we took the earliest starting and latest stopping positions to

analyze the largest possible region. Because gVISTA cannot

analyze sequences >300 kb, we cut the larger genomic

regions into 300 kb blocks for these analyses. Significantly

conserved intronic and intergenic sequences were identified

as putative regulatory elements. Results were visualized in

VISTA (Dubchak et al. 2000; Mayor et al. 2000; Frazer et al.

2004) using six nondevil mammal genomes: Humans, mouse,

rat, dog, horse, and rhesus monkey. SNPs and indels were

then mapped to the identified CNS and annotated as putative

regulatory variants.

Results

Candidate Genomic Regions Underlying Tumor Regression
in Tasmanian Devils

We identified 11 highly differentiated genomic regions be-

tween cases and controls using the SNP data (fig. 2A).

These candidate regions occurred on ten scaffolds across 5

chromosomes and contained 22 annotated genes, 10 of

which had a putative immune and/or cancer-related function

The Genomic Basis of Tumor Regression in Tasmanian Devils (S. harrisii) GBE
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(table 1). Chromosome 6 and the X chromosome did not

possess any candidate regions.

We identified three highly differentiated genomic regions

between cases and controls using the indel data (fig. 2B).

These candidate regions occurred on three scaffolds across

chromosomes 3 and 5. All three candidate regions occurred

on scaffolds also identified in the SNP-based analysis. The SNP

candidate genomic region on chromosome 3 was completely

encompassed by the larger indel candidate region. The can-

didate indel region on chromosome 5 scaffold GL861622 was

completely encompassed by the larger SNP candidate region,

and the indel region on chromosome 5 scaffold GL861682

overlapped both candidate SNP regions identified on this scaf-

fold (fig. 2A and B; tables 1 and 2). The 3 candidate indel

regions contained 12 annotated genes, 7 of which had a

putative immune and/or cancer-related function (table 2).

All seven genes in the candidate indel regions on chromo-

some 5 were identified in the SNP-based analysis, but four

of the five genes identified in the candidate indel region on

chromosome 3 were not identified in the SNP-based analysis

(only MED12L was shared across the SNP and indel candidate

regions on chromosome 3; tables 1 and 2). Three of the four

genes identified only in the candidate indel region on chro-

mosome 3 had a putative immune and/or cancer-related

function (table 2).

Candidate SNPs Underlying Tumor Regression in
Tasmanian Devils

We identified 1148 SNPs in the 11 SNP-based candidate ge-

nomic regions described above (supplementary table S2,

Supplementary Material online), 585 of which we considered

highly differentiated (FST � 0:500). Most of the highly differ-

entiated SNPs were intergenic (69.7%) and intronic (26.8%;

fig. 3A and table 1). Nineteen (�3.3%) were up or down-

stream of a coding-region, a single highly differentiated SNP

was synonymous, and no nonsynonymous candidates were

identified (fig. 3A and table 1).

Forty-nine candidate SNPs occurred in or near loci with

putative cancer-related functions (table 1). We identified

two highly differentiated SNPs in the introns of WDR48

(0:560 � FST � 0:577), a putative tumor suppressor, and

Fig. 2.—Manhattan plots showing differentiation between cases and controls for (A) SNPs, (B) indels, and (C) structural variants. Blue points in (A) and

(B) indicate scaffolds that were identified as highly differentiated candidate genomic regions by segmentFst. The three candidate indel scaffolds in (B) are the

same scaffolds as in (A). Because the x axis is variant index rather than true genomic position (i.e., the 36,000 scaffolds of the reference genome

makes robust physical mapping problematic), the scaffolds only appear slightly shifted. (C) Blue points indicate empirical outliers that passed all

filters (see Materials and Methods). Green points indicate empirical outliers that did not pass all filters. The y axis in all panels represents the

negative log of the pFst statistic.
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Table 1

Candidate Genomic Regions Identified in the SNP-Based segmentFst Analysis with Corresponding Genes and Candidate SNPs

Chromsome Scaffold Start–End Gene Putative Function Candidate SNPs

1 GL834900 59090–264617 Protein phosphatase 2, regulatory

subunit B, delta (PPP2R2D)a
Cell growth/division control;

Activated TLR4 signalinga

–

BCL2/adenovirus E1B 19 kDa inter-

acting protein 3 (BNIP3)a
Apoptosis and authophagya –

Janus kinase and microtubule inter-

acting protein 3 (JAKMIP3)

Microtubule and kinase

binding

13 intronic

2 GL841602 886632–992998 Xylulokinase (XYLB) Metabolism 8 intronic

1 downstream

2 GL841626 476121–923043 Sodium channel, voltage-gated, type

XI, alpha subunit (SCN11A)

Action potential and pain

signaling

4 upstream

WD repeat domain 48 (WDR48)a Deubiquitinating complex

regulator; Potential tumor

suppressora

2 intronic

Golgi reassembly stacking protein

1 (GORASP1)

Protein sorting and

modification

1 upstream

Tetratricopeptide repeat domain

21A (TTC21A)

Protein localization –

Xin actin-binding repeat containing

1 (XIRP1)a
Cellular junction function;

leukemia candidate genea

–

Solute carrier family 22, member

14 (SLC22A14)

Molecule transport –

Solute carrier family 22, member

13 (SLC22A13)

Molecular transport and

metabolism

–

Oxidative stress responsive

1 (OXSR1)a
Kinase response to environ-

mental stressa

–

3 GL849905 3117969–3162680 Mediator complex subunit

12-like (MED12L)

Transcriptional coactivation –

4 GL856968 1213224–1266653 – – –

5 GL861622 8458–1345777 Lymphoid-restricted membrane

protein (LRMP)a
Peptide delivery to MHC

class I; related to b-cell

lymphomasa

–

Cancer susceptibility candidate

1 (CASC1)a
Microtubule and tubulin

binding; related to respira-

tory neoplasmsa

–

LYR motif containing 5 (LYRM5) Protein synthesis –

Kirsten rat sarcoma viral oncogene

homolog (KRAS)a
Member of small GTPase su-

perfamily; implicated in

multiple carcinomasa

1 intronic

Lamin tail domain containing

1 (LMNTD1)a
Structural activity; related to

respiratory neoplasmsa

30 intronic

4 upstream

4 downstream

Ras association domain family

member 8 (RASSF8)a
Tumor suppressor protein;

epithelial cell migrationa

–

Sarcospan (SSPN) Structural support –

5 GL861682 1183188–1317129 Glutamate decarboxylase 2 (GAD2) L-glutamic acid catalysis 87 intronic

2 upstream

1 synonymous

5 GL861682 1500464–1544340 Myosin IIIA (MYO3A)a Hearing; associated with

bladder/colon cancera

7 intronic

1 upstream

5 GL861847 655–43394 – – –

5 GL862178 7209–28728 ENSSHAG00000000783 Unannotated coding

sequence

9 intronic

2 downstream

5 GL862286 963–11539 – – –

aPutative immune or cancer-related function. Candidate SNPs were variants with FST � 0:5.
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a top SNP in the intron of KRAS (FST¼0.765), a gene im-

plicated in multiple carcinomas. We also identified 38

highly differentiated SNPs (0:566 � FST � 0:790) in or

near LMNTD1 and eight candidate SNPs

(0:500 � FST � 0:536) in or near MYO3A. LMNTD1 is

related to respiratory neoplasms, and although MYO3A

primarily functions in hearing, modifications in MYO3A

were found to be associated with bladder and colon can-

cer (see Discussion; Lascorz et al. 2010; Chung et al.

2011).

Table 2

Candidate Genomic Regions Identified in the Indel-Based segmentFst Analysis with Corresponding Genes and Candidate Indels

Chromsome Scaffold Start–End Gene Putative Function Candidate Indels

3 GL849905 2931754–3563755 MED12L Transcriptional coactivation 6 intronic

1 upstream

4 intronicb

G protein-coupled receptor

87 (GPR87)a
Regulated by p53; overexpressed in

carcinomasa

1 intronicb

3 downstreamb

Purinergic receptor P2Y,

G-protein coupled,

14 (P2RY14)a

Receptor activity; immune and neu-

roimmune functiona

–

G protein-coupled receptor

171 (GPR171)

Ligand-binding receptor –

Siah E3 ubiquitin protein li-

gase 2 (SIAH2)a
Hypoxia response; involved in apo-

ptosis and tumor suppressiona

–

5 GL861622 159894–1238762 CASC1a Microtubule and tubulin binding;

related to respiratory neoplasmsa

1 intronic

LYRM5 Protein synthesis –

KRASa Small GTPase superfamily member;

implicated in multiple carcinomasa

–

LMNTD1a Structural activity; related to respi-

ratory neoplasmsa

7 intronic

1 upstream

1 downstream

RASSF8a Tumor suppressor protein; epithelial

cell migrationa

1 intronic

5 GL861682 1186331–1550521 GAD2 L-glutamic acid catalysis 11 intronic

MYO3Aa Hearing; associated with bladder/co-

lon cancera

21 intronic

1 upstream

aPutative immune or cancer-related function.
bIndels found in overlapping open-reading frames and, therefore, with ambiguous designations. Candidate indels were variants with FST � 0:5. Abbreviated gene names

were defined in table 1.

UTR 0 %

Syn 0.2%
Nonsyn 0 %

Upstream 2.1%
Downstream 1.2%

Intergenic 69.7%

Intronic 26.8%

UTR 0%

Syn 0%
Nonsyn 0%

Upstream 2.3%
Downstream 0.8%

Intergenic 60.2%

Intronic 36.7%

A B

Fig. 3.—Pie charts depicting the relative frequencies of different mutational classes among the most differentiated (A) SNPs (n¼585) and (B) indels

(n¼128) in the candidate genomic regions from figure 2. Nonsyn, nonsynonymous; Syn, synonymous; UTR, untranslated region.
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Candidate Indels Underlying Tumor Regression in
Tasmanian Devils

We identified 197 indels in the 3 indel-based candidate ge-

nomic regions (supplementary table S3, Supplementary

Material online), 132 of which were highly differentiated

(FST � 0:500). Excluding the four ambiguous highly differen-

tiated indels identified in the overlapping gene region on

chromosome 3 (see below), most of the highly differentiated

indels were intergenic (60.2%) and intronic (36.7%; fig. 3B

and table 2). Four indels (�3.1%) were up or downstream of

a coding-region. As expected, no indels were identified in the

coding-regions or UTRs of genes (fig. 3B and table 2).

For the candidate region on chromosome 3 (fig. 2B and ta-

ble 2), we identified four variants with ambiguous designations

because MED12L (scaffold position 2786476–3136515) and

GPR87 (scaffold position 2912235–2934071) are overlapping

genes. Overlapping genes have been documented in vertebrate

genomes, including humans and other mammals (e.g.,

Makalowska et al. 2005). Based on the annotation of the refer-

ence S. harrisii genome (downloaded from Ensembl January

2016; Murchison et al. 2012), GPR87 is nested within MED12L.

We identified one highly differentiated variant (FST¼0.644) in

intronic regions of both genes as well as three variants that oc-

curred in an intronic region of MED12L and downstream of

GPR87(0:571 � FST � 0:644).MED12Lfunctionsintranscrip-

tional coactivation, and GPR87 is regulated by p53 (table 2).

Several other candidate indels also occurred in or near loci

with putative cancer-related functions (table 2). We identified

seven intronic candidates (0:804 � FST � 0:864) as well as

individual up- (FST¼0.884) and downstream candidates

(FST¼0.831) for LMNTD1. We also identified candidate indels

in the introns of RASSF8 (FST¼0.686) and CASC1 (FST¼0.556).

RASSF8 is a putative tumor suppressor, and CASC1 has also

been associated with neoplasms, similar to LMNTD1 (table 2).

Twenty-one intronic (0:516 � FST � 0:703) and an up-

stream candidate indel (FST¼0.703) were found for MYO3A

(table 2); MYO3A also possessed several candidate SNPs

(table 1) and has been implicated in cancer susceptibility

(Lascorz et al. 2010; Chung et al. 2011).

Candidate SVs Underlying Tumor Regression in Tasmanian
Devils

We identified 35 highly differentiated putative SVs that

passed all filters (fig. 2C). Of these 35 candidate SVs, 21

were intergenic, 11 were found in the introns of 10 genes,

1 variant was upstream of a gene, and 2 variants were down-

stream of a single gene. Of the 14 variants in or near genes,

we identified 6 insertions (58–584 bp), 2 deletions (95–

614 bp), and 6 putative translocations (table 3). Both deletions

and all but one insertion occurred in introns; one insertion was

upstream of a coding-sequence. Of the six putative translo-

cations, four occurred in introns and two occurred in down-

stream regions, although both putative downstream

translocations also involved introns of another gene (i.e., we

genotyped six highly differentiated translocations, but two

overlapped, leaving four candidate translocations; see below;

table 3).

Six of the 12 genes associated with a candidate SV were

implicated in immune-response and/or cancer-risk (table 3).

We identified insertions in the introns of CSRNP3, MAP3K5,

and SEC31A; the former two genes are involved with apo-

ptosis, and the latter is associated with inflammatory myofi-

broblastic tumors. We also found putative translocations

involving three candidate genes (table 3). We identified a pu-

tative translocation between the intron of TRIM33, which is

involved with the ligation of E3 ubiquitin-protein and is related

to carcinomas, with an intergenic region on chromosome

three. We also identified two putative translocations between

the downstream regions of LMNTD1 and the intronic regions

of TNKS. LMNTD1 has been associated with respiratory neo-

plasms and was identified as a candidate gene in both the

SNP (table 1) and indel (table 2) analyses. TNKS is involved

with Wnt signaling and associated with various forms of hu-

man cancer (table 3).

Detecting the Polygenic Basis of the Regression Phenotype

FST distributions for all six biological pathways for SNPs

(0:19 � P � 1:00) and indels (0:83 � P � 1:00) were

nearly identical to that of the rest of the genome, indicating

an absence of detectable polygenic selection in these partic-

ular pathways (supplementary fig. S1, Supplementary

Material online).

Identification of Putative Regulatory Elements in the
Candidate Genomic Regions

We identified CNS in six of the seven candidate genomics

regions analyzed; the first candidate region on chromosome 2

(scaffoldGL841602)didnot returnamatch.Althoughweiden-

tified between 1 and 52 CNS per candidate genomic region,

only one candidate genomic region, scaffold GL861682 on

chromosome5,possessedvariants in the identifiedCNS(fig.4).

On chromosome 5 scaffold GL861682, we identified 23

conserved intronic sequences, all of which were introns for

MYO3A, and a single conserved intergenic sequence; these

regions were 102–541 bp and 67.5–85.4% similar at the se-

quence level. Two of the conserved MYO3A intronic sequen-

ces, which represent putative regulatory elements, possessed

SNPs that were highly differentiated between cases and con-

trols (fig. 4). The first candidate regulatory intronic region

(position 1438502–1438639, 73.6% similarity to the human

genome) possessed a highly differentiated SNP at position

1438555 (FST¼0.536). The second candidate regulatory

intronic region (position 1498234–1498453, 73.3% similarity

to the human genome) possessed two candidate SNPs at

positions 1498270 (FST¼0.536) and 1498411 (FST¼0.491).
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Discussion

We predicted that the genomic basis of tumor regression in

Tasmanian devils would be 1) polygenic; 2) involve specific

biological pathways related to cancer risk and DFT1 response;

and 3) be biased toward putative regulatory rather than

protein-coding regions. We found three highly differentiated

candidate genomic regions, indicating that the genomic basis

of tumor regression in Tasmanian devils was polygenic. We

did not detect signatures of polygenic selection in the six

pathways investigated, suggesting that the genetic basis of

tumor regression is either associated with the candidate

genomic regions discussed above and/or other biological

pathways. We identified putative regulatory variation in genes

related to immune response and/or cancer risk but no non-

synonymous variation, suggesting that natural DFT1 regres-

sion may be driven, at least in part, by differential host

expression of key candidate genes. We discuss each outcome

in detail below.

First, we identified three highly differentiated candidate

regions across chromosomes 3 and 5. Although not all var-

iants in these candidate regions were necessarily associated

with the regression phenotype and may simply be linked to

Table 3

Candidate Genes Identified in the Structural Variant Analysis

Chromsome Scaffold Position Type Gene Putative Function

2 GL841465 252851 58 bp insertion intron DTW domain containing 2

(DTWD2)

Mitochondrion protein

targeting

GL841584 1176582 95 bp deletion intron BMP binding endothelial regula-

tor (BMPER)

Bone morphogenetic protein

inhibition

3 GL849630 133609 584 bp insertion upstream Solute carrier family 38 member

11 (SLC38A11)

Amino acid transport

GL849631 677692 278 bp insertion intron Cysteine-serine-rich nuclear pro-

tein 3 (CSRNP3)a
Transcriptional activator regu-

lator; apoptosisa

4 GL856953 1140408 247 bp insertion intron Mitogen-activated protein ki-

nase kinase kinase 5

(MAP3K5)a

Apoptosis signal transductiona

GL856993 210323 Translocation of intron with

intergenic region on chro-

mosome 3 (GL849549)

Tripartite motif containing 33

(TRIM33)a
E3 ubiquitin-protein ligase;

related to carcinomasa

5 GL861591 1045356 614 bp deletion intron ENTH domain containing 1

(ENTHD1)

Unknown

GL861622 511673 Translocation of downstream

region with intron of

tankyrase (TNKS) on chro-

mosome 6 (see below)

LMNTD1a Structural activity; related to

respiratory neoplasmsa

511686 Translocation of downstream

region with intron of TNKS

on chromosome 6 (see

below)

LMNTD1a Structural activity; related to

respiratory neoplasmsa

GL861672 1578145 69 bp insertion intron GTP binding protein 4 (GTPBP4) Cell signaling

6 GL864736 1234425 Translocation of intron with

downstream region of

LMNTD1 on chromosome 5

(see above)

TNKSa Wnt signaling; target of cancer

treatmenta

1234867 Translocation of intron with

downstream region of

LMNTD1 on chromosome 5

(see above)

TNKSa Wnt signaling; target of cancer

treatmenta

GL864753 78910 395 bp insertion intron SEC31 homolog A (SEC31A)a Vesicle budding; related to in-

flammatory myofibroblastic

tumorsa

X GL867607 3118283 Translocation of intron with

intergenic region on chro-

mosome 1 (GL835007)

Dachshund family transcription

factor 2 (DACH2)

Transcription factor

aPutative immune or cancer-related function. Abbreviated gene names were defined in tables 1 and 2.
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one or a few large-effect variants, the strong signal of differ-

entiation across multiple genomic regions suggested that

the regression phenotype was indeed polygenic. These

regions were independently identified in the SNP- and

indel-based analyses and contained candidate genes

such as GPR87, CASC1, KRAS, RASSF8, and LMNTD1, all

of which contained one or more candidate variants.

LMNTD1 was identified as a candidate gene in the SNP-,

indel-, and SV-based analyses, although the SV-based

results must be interpreted with caution; the fragmented

state of the reference genome (i.e., �36,000 scaffolds)

made interpretation difficult.

Second, we did not detect signatures of polygenic selection

in the six pathways investigated. Given that tumor regressions

were first detected in 2009 (Pye et al. 2016; Wright et al.

2017) and that first-step mutations are often of large-effect

(Rokyta et al. 2005), minor allele frequency changes at many

loci may not have had enough time to occur (e.g., �4–5

Reference genome: Chromosome 10:Human 2006 26,305,496-26,425,631

100%

50%

100%

50%

100%
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MYO3A
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26,377,051 26,377,091 26,377,131 26,377,171
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* * *

Fig. 4.—VISTA plot showing conserved sequences across devils and six other mammals for a candidate genomic region containing MYO3A. (A) We

plotted 1,400,000–1,500,000 on devil chromosome 5 scaffold GL861682. Two conserved intronic sequences (B and C), indicated by the red boxes in (A),

possessed candidate SNPs that were highly differentiated (FST � 0:491) between cases and controls, suggesting that these SNPs may lead to regulatory

variation in MYO3A. Genomic position in the reference human genome is listed on the x axis in all panels. Percent similarity is shown on the y axis where the

blue line indicates 70% identity in all panels. Asterisks represent approximate location of candidate SNPs. CNS, conserved noncoding sequence; UTR,

untranslated region.

The Genomic Basis of Tumor Regression in Tasmanian Devils (S. harrisii) GBE

Genome Biol. Evol. 10(11):3012–3025 doi:10.1093/gbe/evy229 Advance Access publication October 13, 2018 3021

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/10/11/3012/5129084 by U

niversity of Idaho Law
 Library user on 27 N

ovem
ber 2018

Deleted Text: generations assuming a <?A3B2 thyc=10?>two-year<?thyc?> generation time; McCallum et<?A3B2 show $146#?>al. (2009); Hamede et<?A3B2 show $146#?>al. (2015)).


generations assuming a 2-year generation time; McCallum

et al. 2009; Hamede et al. 2015). The polygenic basis of

DFT1 regression may therefore be in the form of a few,

large-effect variants rather than many variants of small-

effect, consistent with other work investigating the genetic

basis of DFT1-related phenotypes in devils (e.g., survival fol-

lowing infection; Margres et al. 2018).

Third, none of the candidate variants were nonsynony-

mous, and only a single candidate synonymous SNP was iden-

tified, suggesting that differential expression of key candidate

genes in devils may play a role in tumor regression. Indeed,

Wright et al. (2017) did not find any candidate SNPs in

coding-sequences using GWA approaches investigating the

same trait, and CTVT regression in dogs also appears to be

driven, at least in part, by differential gene expression

(Frampton et al. 2018). Noncoding variation has also repeat-

edly been linked to tumorigenesis and other diseases in

humans (e.g., Mathelier et al. 2015). Bias toward differential

expression rather than nonsynonymous variation, however, is

not specific to tumor regression or cancer-related phe-

notypes. Several studies have suggested that adaptive

expression differentiation may be more likely than adap-

tive changes to coding regions, at least for rapid adap-

tation in complex phenotypes, because more mutational

mechanisms exist for altering expression levels than for

protein-coding sequences (Fraser 2013; Konczal et al.

2015; Margres et al. 2017). Our results are consistent

with these expectations.

We also found three candidate SNPs in two significantly

conserved intronic sequences in MYO3A. Introns can function

as regulatory elements (e.g., Majewski and Ott 2002; Wei

et al. 2006), and the conservation of these intronic regions

across �160 Myr of evolution (marsupial-placental split; Luo

et al. 2011) indicated that these sequences may have an im-

portant regulatory function. These three candidate SNPs,

therefore, may lead to differential expression of MYO3A be-

tween cases and controls. Although MYO3A primarily func-

tions in transferase/kinase activity and plays a key role in

hearing in humans, MYO3A is highly methylated in bladder

tumors (Chung et al. 2011). A GWA study also found that an

SNP in the intron of MYO3A was associated with an increased

risk for colon cancer in humans (Lascorz et al. 2010), similar to

our results (although the candidate colon cancer SNP,

rs11014993, occurred in a different intron). Future transcrip-

tomic and functional genomic studies of serially sampled dev-

ils with and without the regression phenotype are needed to

determine if MYO3A, along with the other candidate genes,

are differentially expressed to determine what role these

genes may have in tumor regression.

Despite substantial statistical limitations due to the rarity of

the regression phenotype and therefore unavoidable small

sample sizes, Wright et al. (2017) used a GWA framework

and found evidence that SNPs in the introns of loci involved

with angiogenesis, particularly PAX3, may be associated with

tumor regression. PAX3 occurs on chromosome 3 but on a

different scaffold than the candidate region we identified on

the same chromosome. We did identify variants in the introns

as well as up and downstream of PAX3, but none of these

variants were highly differentiated. The top variant for PAX3

was an intronic SNP (FST¼0.307), but mean FST for PAX3

intronic SNPs was �0.026 and all FST estimates for indels

near PAX3 were�0. PAX3, however, is involved in angiogen-

esis through regulation of bone morphogenic proteins (BMP).

We found a 95-bp deletion in the intron of BMPER on chro-

mosome 2, indicating that angiogenesis may indeed play an

important role in natural tumor regression (although our poly-

genic selection analysis suggested otherwise).

Comparative oncology should lead to advances in both

human and animal health (Schiffman and Breen 2015), and

tumor regression is not specific to transmissible cancers.

Spontaneous tumor regression, albeit rare (�1 in 60–

100,000 cases; Missotten et al. 2008), has been documented

in human cancers (Sengupta et al. 2010). One such cancer is

Merkel cell carcinoma (MCC), a rare type of skin cancer that

often appears on the face, head, or neck in the form of a

nodule (Goessling et al. 2002). MCC is of neuroendocrine

origin (Goessling et al. 2002) and may be associated with

Merkel cell polyomavirus, somewhat similar to DFT1’s neuro-

ectoderm/Schwann cell origin and transmissible nature

(Murchison et al. 2010). The first spontaneous regression of

MCC was documented in 1986 (O’Rourke and Bell 1986),

and regression has occurred at least 22 times since. The mech-

anism of MCC regression is unclear but may be driven by a T-

cell-mediated immune response (Connelly et al. 2000; Pang

et al. 2015).

Understanding the genetic basis of regression in DFT1 and

other nonhuman cancers may enable the identification of

general mechanisms underlying tumor regression in MCC

and other human cancers. Indeed, ethical considerations of-

ten preclude investigating natural, untreated tumor progres-

sion in human cancers, highlighting the importance of

comparative oncological studies investigating the genetic ba-

sis of general tumor phenotypes such as regression. The non-

linear relationship between genotype and cancer-related traits

has been labeled as one of the biggest challenges in biomed-

ical sciences (Katsios and Roukos 2010), and comparative on-

cology should advance our knowledge of cancer progression,

tumor regression, and cancer-normal cell interactions and co-

evolution (Schiffman and Breen 2015). We identified specific,

putative regulatory variants in or near genes related to im-

mune response and/or cancer risk that differentiated cases

from controls, indicating that natural tumor regression may

be driven, at least in part, by differential host expression of key

genes. Our results support the concept that host immune

response is necessary for triggering tumor regression

(Frampton et al. 2018), providing candidate genes and mech-

anisms that may translate to novel treatments in human and

nonhuman cancers.
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Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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