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Abstract

Identifying the genetic architecture of complex phenotypes is a central goal of mod-

ern biology, particularly for disease‐related traits. Genome‐wide association methods

are a classical approach for identifying the genomic basis of variation in disease phe-

notypes, but such analyses are particularly challenging in natural populations due to

sample size difficulties. Extensive mark–recapture data, strong linkage disequilibrium

and a lethal transmissible cancer make the Tasmanian devil (Sarcophilus harrisii) an

ideal model for such an association study. We used a RAD‐capture approach to

genotype 624 devils at ~16,000 loci and then used association analyses to assess

the heritability of three cancer‐related phenotypes: infection case–control (where

cases were infected devils and controls were devils that were never infected), age

of first infection and survival following infection. The SNP array explained much of

the phenotypic variance for female survival (>80%) and female case–control (>61%).

We found that a few large‐effect SNPs explained much of the variance for female

survival (~5 SNPs explained >61% of the total variance), whereas more SNPs (~56)

of smaller effect explained less of the variance for female case–control (~23% of the

total variance). By contrast, these same SNPs did not account for a significant pro-

portion of phenotypic variance in males, suggesting that the genetic bases of these

traits and/or selection differ across sexes. Loci involved with cell adhesion and cell‐
cycle regulation underlay trait variation, suggesting that the devil immune system is

rapidly evolving to recognize and potentially suppress cancer growth through these

pathways. Overall, our study provided necessary data for genomics‐based conserva-

tion and management in Tasmanian devils.
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1 | INTRODUCTION

A long‐standing and significant problem in biology is understanding

the genotype–phenotype relationship, and the recent development

of genomic techniques has allowed researchers to address this prob-

lem with increasing sophistication. Because the genetic basis of poly-

genic traits, however, has been difficult to characterize, the genetics

underlying many ecologically important and disease‐related traits is

often unknown (Savolainen, Lascoux, & Merilä, 2013; Schork et al.,

2013; Shao et al., 2008; Wellenreuther & Hansson, 2016). To date,

genome‐wide association studies (GWASes) have largely been used

to identify variants associated with complex phenotypes (Gibson,

2012; Manolio et al., 2009), particularly those related to disease.

Although GWASes have successfully identified candidate loci, dis-

covered variants often explain only a small proportion of the pheno-

typic variance (Eichler et al., 2010; Marjoram, Zubair, & Nuzhdin,

2014; Park et al., 2010; Schork et al., 2013) and, therefore, possess

low predictive power (Chatterjee et al., 2013). Indeed, most variants

in humans exhibit small effect sizes and explain only a small propor-

tion of heritability (Hindorff et al., 2009; Yang et al., 2010, 2012)

despite a bias towards detecting and publishing larger effect sizes

(i.e., “Winner's Curse”; Dembeck et al., 2015; Gibson, 2012; Park

et al., 2010).

A handful of studies have found evidence of large‐effect SNPs

for certain traits in humans (e.g., ~12 variants or fewer explained

~50% of the phenotypic variance), such as pigmentation (Sulem et

al., 2007), age‐related macular degeneration (Jakobsdottir, Gorin,

Conley, Ferrell, & Weeks, 2009), hypoxia adaptation (Simonson et

al., 2010), lung cancer risk (Wang et al., 2014) and lipid levels asso-

ciated with coronary heart disease (Helgadottir et al., 2016). Other

studies, however, have argued that the polygenic nature of com-

plex traits often requires thousands of SNPs to explain a large pro-

portion of the heritability; for example, ~9,500 variants explained

~50% of the variation in human height (Wood et al., 2014). Even

in these case studies, much of the phenotypic variance is still unac-

counted for (Yang et al., 2010, 2015). This missing heritability could

be the result of many variants of small effect being missed due to

significance thresholds, unsampled rare variants of large effect and/

or causal variants of any effect size not being captured by the SNP

array (e.g., causal variants not being in linkage disequilibrium [LD]

with the genotyped variants; Gibson, 2012; Hindorff et al., 2009;

Manolio et al., 2009). Therefore, even in humans for which we

have extensive genomic resources and genotypic information for

millions of individuals, it remains unclear whether most quantitative

traits are determined by many loci of small effect or a few loci of

large effect.

Identifying the genetic basis of ecologically important traits in

threatened and endangered wildlife populations is becoming increas-

ingly important for management and conservation, such as to guide

captive breeding programmes. Emerging infectious diseases (EIDs)

are now considered a major cause of species’ declines and endan-

germent, and GWAS methods are a classical approach for identifying

the genomic basis of variation in disease phenotypes (e.g., Hindorff

et al., 2009). GWASes in natural populations, however, are particu-

larly challenging owing to difficulties in achieving sufficient sample

sizes to attain appropriate statistical power (Kardos, Husby, McFar-

lane, Qvarnström, & Ellegren, 2016). For example, identifying the

genetic basis of a complex trait such as survival following infection

requires extensive mark–recapture data that are often difficult to

obtain. As a result, the rare examples of large‐effect loci in wildlife

species (e.g., colour variation in mice; [Linnen et al., 2013] and

armour plating in sticklebacks; [Colosimo et al., 2005]) have not typi-

cally been associated with disease and have been discovered using

methods other than GWAS approaches. Although detecting variants

of an appreciable effect in relatively large natural populations typi-

cally requires several thousand samples and extensive sampling of

the genome (Yang et al., 2015), simulations have demonstrated that

these variants can be reliably detected with far less sampling in rela-

tively small populations with strong LD (e.g., LD >50 kb; Kardos et

al., 2016). The Tasmanian devil (Sarcophilus harrisii) matches these

criteria; with extensive mark–recapture field data, strong LD

(~200 kb; Epstein et al., 2016), and a species‐specific, nearly 100%

lethal infectious cancer (Hamede et al., 2015), the devil is an ideal

model for a GWAS in a natural population.
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The Tasmanian devil is the largest extant marsupial carnivore,

and facial tumours were first discovered in the northeastern part of

the island in 1996. The disease is caused by an infectious cell line

and is, therefore, a transmissible cancer (Pearse & Swift, 2006). Such

cancers are extremely rare, with the only other natural cases found

in dogs (Murgia, Pritchard, Kim, Fassati, & Weiss, 2006) and bivalves

(Metzger et al., 2016). Since 1996, devil facial tumour disease

(DFTD) has spread approximately 80% of the way across Tasmania,

caused upwards of 95% declines in populations affected the longest

and reduced the total population size by 80% (McCallum, 2008;

McCallum et al., 2009). The cancer is spread via biting, which is com-

mon during social interactions (Hamede, McCallum, & Jones, 2013).

Low genetic diversity in devils due to historic population bottlenecks

(3–5 k years ago; Brüniche‐Olsen, Jones, Austin, Burridge, & Holland,

2014; Hendricks et al., 2017; Miller et al., 2011) and silencing of cell

surface MHC molecules by DFTD have led to what appears to be

universal susceptibility (Siddle et al., 2013). Simple epidemiological

models have predicted devil extinction 25–30 years following dis-

ease arrival (McCallum et al., 2009), but the longest‐diseased popula-

tions persist, suggesting devils may be responding to the strong

selection imposed by DFTD (Jones et al., 2008). Indeed, recent work

has discovered that some devils exhibited an immune response to

DFTD (Pye et al., 2016) and, in rare cases, even tumour regression

(Wright et al., 2017). Further, time‐series genome scan analyses

across three populations pre‐ and post‐DFTD emergence found evi-

dence for rapid evolution in genes related to immune function and

cancer risk (Epstein et al., 2016). Taken together, these results sug-

gest the evolution of resistance and/or tolerance to DFTD.

Although genomic regions showing a signature of selection have

been identified (Epstein et al., 2016), the relationship of these mark-

ers to specific DFTD‐related phenotypes as well as effect sizes of

particular variants is unknown. We used a restriction‐site associated

DNA (RAD)‐capture (“Rapture”) approach (Ali et al., 2016) to geno-

type 624 individuals from six localities (Figure 1) at approximately

16,000 RAD loci; loci were selected for homology with mammalian

immune function, cancer recognition, and to provide broad coverage

of the genome. We then used association analyses to assess heri-

tability and identify loci underlying three devil phenotypes/pheno-

type proxies: infection case–control (where cases were infected

devils and controls were devils that were never infected), age of first

infection and survival following infection.

2 | MATERIALS AND METHODS

2.1 | Trapping and phenotypic data

Tasmanian devils were trapped from 2000 to 2016 using custom‐
built traps constructed of 300‐mm polypropylene pipe. All traps were

baited with meat. Trapping sessions were carried out with 40–120
traps over 7–10 consecutive nights in a capture–mark–recapture
framework. Traps were checked daily beginning at dawn; details of

field methods were previously described (Hamede et al., 2015). Fol-

lowing initial capture, devils were individually tagged with microchip

transponders (Allflex NZ Ltd, Palmerstone North, New Zealand).

Devils were aged using a combination of head width (a linear mea-

sure of body size), molar eruption, molar tooth wear and canine

over‐eruption. Most individuals were trapped as juveniles, and there-

fore, the age was known. DFTD status was categorized from

histopathological confirmation of tumour biopsies. All devils were

released following data collection (see below) except for nine devils

from Forestier that were euthanized for health reasons; these devils

were not included in survival analyses (see below), although their

inclusion did not affect results (data not shown).

We performed association analyses (described below) for three

phenotypes: (a) case–control where “cases” were infected individu-

als, and “controls” were individuals that were never infected and

were captured (uninfected) ≥800 days from the estimated date of

birth for the GEMMA analyses and ≥1,000 days for the ANGSD analysis

(see below); (b) the estimated age of an individual (in days) when it

was first observed with DFTD; and (c) length of known time to be

alive (in days) after being observed with DFTD, our proxy for sur-

vival. Because observing the endpoint of death in a mark–recapture
trapping framework is impossible (i.e., cannot trap a dead individual),

we estimated survival as the difference in days between the first

time an individual was observed with DFTD and the last time it was

observed at all; we required at least two capture events following

infection and that the individual must have survived ≥40 days to

allow for recapture to be possible. We recognize that our survival

estimate was a simplified proxy for true survival, but we did not

F IGURE 1 Sampling localities in Tasmania. We genotyped and
phenotyped 624 Tasmanian devils from six collection sites. Red lines
indicate the approximate location of the disease front from 2000 to
2015
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possess the necessary longitudinal data across all sampled sites to

more robustly model true survival as previously described (Wells et

al., 2017). Mark–recapture frameworks estimate survival for classes

of individuals (e.g., McDonald, 2018), but individual phenotype esti-

mates are required for GWASes. We therefore chose to maximize

sample size and statistical power by using the simplified survival

proxy described above. To complement this simplified survival met-

ric, we calculated an additional estimate for a single sampling locality

(West Pencil Pine) for which we possessed the necessary longitudi-

nal data to do so. West Pencil Pine is the most intensely and consis-

tently sampled locality and has been sampled at 3‐month intervals

since the outbreak of the disease in 2006. Additionally, tumour

growth models and robust survival estimates (Hamede, Beeton, Car-

ver, & Jones, 2017; Wells et al., 2017) have been calculated only for

this locality. We used our individual tumour measurements and

the logistic tumour growth curves from Wells et al. (2017) to back‐
calculate from the first observation of a tumour on an individual to

the time when the tumour was at a volume of 3 mm3 (representing

the size at which tumours are first observable) for 60 individuals

from West Pencil Pine. We then followed the approach of Kéry and

Schaub (2011) to test for differences in recapture probabilities while

controlling for infection status and seasonality. We did not detect

any significant differences in recapture probabilities between sea-

sons or disease status (data not shown). Therefore, any adjustments

made to estimate survival beyond the last capture would be made

equally to diseased (i.e., cases) and non‐diseased (i.e., controls) indi-

viduals and would have no effect on the association analyses. The

new West Pencil Pine‐specific survival proxy was the time in days

from the back‐calculated date of infection to the date of final cap-

ture. We use “survival” to refer to the simplified proxy (i.e., the dif-

ference in days between the first time an individual was observed

with DFTD and the last time it was observed at all) throughout the

manuscript and “West Pencil Pine‐specific survival” to refer to the

back‐calculated survival estimate for the 60 West Pencil Pine indi-

viduals. The simplified survival proxy and the West Pencil Pine‐speci-
fic estimates showed a significant, positive correlation (p < 0.0001,

R2 = 0.7117, R = 0.8050; Supporting Information Figure S1), indicat-

ing that our simplified proxy provided a fair estimate of survival fol-

lowing infection. For age of first infection and case–control, we only

included individuals that were born during or after the first year of

DFTD in their respective population. Because the West Pencil Pine

site was not strongly impacted by disease from 2006 to 2011 due

to the presence of a tetraploid tumour associated with low preva-

lence rates (Hamede et al., 2015), we used 2011 as the year of dis-

ease arrival for this population. All phenotype data are provided in

Supporting Information Table S1.

2.2 | RAD‐capture array development

We used the data (i.e., 360 individuals sequenced for 90,000 loci)

from Epstein et al. (2016) to develop a RAD‐capture array (Ali et al.,

2016); the details of data processing and genotyping of the original

RAD loci have been previously described (Epstein et al., 2016).

RAD‐capture extends traditional RADseq, which amplifies all loci

adjacent to restriction enzyme cut sites, by adding a sequence cap-

ture step to the end of the RADseq protocol (Ali et al., 2016). We

targeted 7,108 RAD loci that were genotyped in more than half the

individuals, had ≤3 non‐singleton SNPs and had a SNP with a minor

allele frequency (MAF) ≥0.05. To improve coverage of the genome,

each locus was ≥20 kb away from other targeted loci. Additionally,

we targeted 6,315 loci that had a non‐singleton SNP within 50 kb of

an immune related gene, had ≤4 non‐singleton SNPs and were geno-

typed in ≥1/3 of the individuals. Finally, we targeted 3,316 loci that

showed some preliminary evidence of association with DFTD sus-

ceptibility and had ≤5 non‐singleton SNPs (Epstein et al., 2016). In

total, we targeted 15,898 RAD loci (there was some overlap among

criteria). All targeted restriction cut sites are provided in Supporting

Information Table S2.

2.3 | Sequencing and data processing

RAD‐capture libraries were constructed using the pstI restriction

enzyme for 624 S. harrisii from six localities (Figure 1). Libraries were

sequenced on an Illumina NextSeq at the University of Oregon Geno-

mics and Cell Characterization Core Facility. Reads were demulti-

plexed, and low‐quality reads were removed using process_radtags

from STACKS (version 1.21; Catchen, Hohenlohe, Bassham, Amores, &

Cresko, 2013); this step also removed reads without recognizable bar-

codes or cut sites. The clone_filter program was used to remove

potential PCR duplicates. Reads were then aligned to the reference

genome (downloaded from Ensembl June 2014; Murchison et al.,

2012) using bowtie2 (Langmead & Salzberg, 2012) with the ‐‐sensitive,
‐‐end‐to‐end, and ‐X 900 settings. Reads were retained if they aligned

to an expected locus or were the mate of a read that aligned to an

expected locus. Regions on the X chromosome were excluded from all

analyses due to reduced genotyping accuracy and power (Wise, Gyi, &

Manolio, 2013); only 350 of the 15,898 targets occurred on the X

chromosome. Plots of number of loci covered per individual, number

of individuals with coverage per locus and mean depth of coverage per

individual are provided in Supporting Information Figure S2.

Because GEMMA association analyses (see below) required individ-

ual genotype calls, genotype likelihoods for each potential segregat-

ing position were calculated with ANGSD (described in detail below;

Korneliussen, Albrechtsen, & Nielsen, 2014); missing genotypes were

imputed, and genotype probabilities were calculated in BEAGLE

(Howie, Donnelly, & Marchini, 2009). Imputation was conducted

using a larger data set containing 3,568 individuals (data not shown),

and each locality and chromosome was imputed separately; imputed

genotypes are available upon request. The parameters and settings

used in ANGSD (version 0.910) are provided in Supporting Information

Table S3.

2.4 | GEMMA association tests

We fit a Bayesian Sparse Linear Mixed Model (BSLMM; Zhou,

Carbonetto, & Stephens, 2013) implemented in GEMMA (Zhou &
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Stephens, 2012) for case–control, age of first infection, survival fol-

lowing infection and the West Pencil Pine‐specific survival estimate

to characterize the genetic basis of each trait. Because preliminary

models indicated a greater predictive power for some phenotypes

when males and females were examined separately (data not shown),

sexes were analysed collectively as well as independently. BSLMMs

are a hybrid between linear mixed and sparse regression models and

work under the assumption that most SNPs have a very small effect

on the phenotype and a few SNPs have a larger effect. The model

estimates an effect‐size term for every SNP, the number of large‐
effect SNPs, the proportion of phenotypic variance explained by all

SNPs (and other similar hyperparameters) and the proportion of phe-

notypic variance explained by only large‐effect SNPs. The effect

sizes are estimated simultaneously for all SNPs after accounting for

relatedness via a K‐matrix as well as background effects of all loci.

We used the imputed genotypes and genotype probabilities from

BEAGLE (described above) as input for GEMMA. We ran GEMMA on SNPs

with MAF >0.05 and ≤5% missing data following imputation. We

ran ≥5 million iterations following a 500,000‐iteration burn‐in, and
we chose the linear BSLMM option except for the case–control phe-
notype, for which we chose the probit model. Similar to previous

work (Lind et al., 2017), we used the posterior probability of a SNP

having a large effect on a phenotype (after accounting for the

effects of other SNPs in the genome) to identify candidate genes

(see below) because we felt that this metric aptly captured a vari-

ant's contribution to that particular trait. SNP counts and sample

sizes are given in Table 1.

2.5 | Association tests with ANGSD

To complement our GEMMA analyses, we used ANGSD to run gener-

alized linear model association tests (Skotte, Korneliussen, &

Albrechtsen, 2012) on the same phenotypes described above

except for the West Pencil Pine‐specific survival estimate (not

analysed in ANGSD). Although ANGSD does not calculate chip heri-

tability and other genetic architecture statistics (e.g., effect size) as

the BSLMM in GEMMA does, ANGSD directly incorporates genotyping

uncertainty into the analysis by estimating the posterior probability

of each possible genotype (using estimates of the population allele

frequency); the generalized linear models used to test for an asso-

ciation between genotype and phenotype are summed over the

possible genotypes and weighted by the posterior probabilities.

ANGSD also directly calculates p-values for each per‐SNP association

whereas GEMMA does not. The same settings used for the allele

frequency estimation were used here (Supporting Information

Table S3). We used an additive association model and

estimated the genotype probability using the allele frequency as a

prior. Only sites with MAF ≥5% (as estimated by ANGSD) were

included.

Sex was included as a covariate for all analyses. For the sur-

vival proxy, we also used age at first infection as a covariate.

Because population structure can lead to inflated p‐values in asso-

ciation testing (Xu & Shete, 2005), we conducted a PCA on geno-

types and included principal component (PC) axes as covariates in

the analyses. First, we obtained a genetic covariance matrix from

the genotype likelihoods using ngsCovar (Fumagalli, Vieira, Lin-

deroth, & Nielsen, 2014) and extracted the PCs. We next calcu-

lated Tracy–Widom significance values for the PCs (Patterson,

Price, & Reich, 2006). Except for the survival phenotype (Pearson's

correlation between first PC and phenotype; p = 0.04), PCs were

not significantly correlated with phenotypes. For completeness, we

ran the association analysis for each phenotype with no PCs and

with a number of PCs chosen based on the appearance of scree

plots (1–7, depending on the phenotype). We found that, without

including any PCs, age at first infection exhibited a low inflation

factor (1.02), and the QQ plot indicated a nearly flat distribution

of p‐values (Supporting Information Figure S3). For the case–
control analysis, there was some inflation (inflation factor = 1.21),

but including PCs resulted in little improvement in the inflation

factor or the shape of the curve (inflation factor with PCs ranged

from 1.18 to 2.18; Supporting Information Figure S3). For survival

after infection, however, there was a clear improvement by includ-

ing five PCs as covariates (Supporting Information Figure S3).

Visualization of QQ plots was achieved using the qqman R pack-

age (Turner, 2014).

Following the recommendations of François, Martins, Caye, and

Schoville (2016), we adjusted the p‐values of ANGSD results based on

a genomic inflation factor correction. The genomic inflation factor is

the ratio between the median Z‐scores and the expected median Z‐
scores for a χ2 distribution with one degree of freedom (Devlin &

Roeder, 1999), and works under the assumption that most SNPs are

not strongly associated with the phenotype of interest. To perform

the adjustment, we divided the raw Z‐scores by the inflation factor.

All p‐values were adjusted before using them to identify candidate

genes (Supporting Information Figure S4).

TABLE 1 Number of SNPs and individuals included for each
association test

Analysis SNPs Samples

GEMMA: age at infection 10,777 (males) 213 (males)

11,503 (females) 205 (females)

10,569 (both) 418 (both)

GEMMA: case–control 10,777 (males) 275 (males)

11,503 (females) 289 (females)

10,461 (both) 564 (both)

GEMMA: survival after infection 10,777 (males) 41 (males)

11,503 (females) 69 (females)

11,875 (both) 110 (both)

ANGSD: age at infection 11,417 418

ANGSD: case–control 11,964 468

ANGSD: survival after infection 5,428 110

Notes. Because different numbers of capture events were required for

each phenotype, sample sizes vary by trait. Because sample sizes vary by

trait, SNP filtering, particularly filtering for minor allele frequency, varied

by trait, resulting in different numbers of SNPs for each analysis within a

phenotype.
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2.6 | Identification of candidate genes

Candidate SNPs were identified as the top 0.1% of SNPs for each

phenotype. Tasmanian devil genomes have extensive LD (~200 kb;

Epstein et al., 2016), and we used bedtools (Quinlan & Hall, 2010) to

conservatively identify candidate genes within 100 kb of the top

SNPs. Putative gene functions were identified using GeneCards

(www.genecards.org) and/or NCBI.

3 | RESULTS

3.1 | The genetic basis of cancer‐resistant
phenotypes

We first conducted joint‐sex association tests using a BSLMM in

GEMMA and found that the mean of the posterior distribution of the

proportion of phenotypic variance explained (PVE; a measure of the

additive effect of all interrogated SNPs, or “chip heritability”; Zhou
et al., 2013) accounted for a substantial proportion of the variance

for survival following infection (0.709; 95% CI = 0.276–0.999;
Table 2). The survival proxy (the length of time known to be alive

after being observed with DFTD) was associated with a few SNPs of

large effect (~7), and these SNPs accounted for 60.6% of the PVE

accounted for by all SNPs (or ~43% of the total PVE; Table 2). Mean

PVE was less in the case–control phenotype (0.263; 95% CI =

0.088–0.502; Table 2), and this trait was associated with more SNPs

of smaller effect (~63; Table 2). PVE credible intervals were large

and approximately overlapped zero for age at first infection

(Table 2). Although mean PVE was large for the West Pencil Pine‐
specific survival estimate (0.537), PVE credible intervals were also

large (95% CI = 0.020–0.998; Supporting Information Figure S5 and

Table S4).

Because preliminary models indicated a greater predictive power

for some phenotypes when males and females were examined sepa-

rately, we next conducted sex‐specific association tests using a

BSLMM in GEMMA and found that the mean PVE was substantial for

female case–control (0.614; 95% CI = 0.214–0.984) and female sur-

vival following infection (0.801; 95% CI = 0.467–0.999; Figure 2;

Table 2). Female survival was found to be associated with a few

SNPs of large effect (~5; Table 2); these SNPs accounted for 76.5%

of the PVE accounted for by all SNPs (e.g., five SNPs associated with

female survival explained 76.5% of the 80.1% total PVE explained

by all SNPs, or ~61% of the total PVE). Female case–control was

associated with more SNPs of smaller effect (~56 SNPs accounted

for ~23% of the total PVE; Table 2). PVE credible intervals were

large and overlapped zero (or nearly so) for all traits in males (includ-

ing survival following infection) as well as age of first infection in

females (Figure 2; Table 2), potentially owing to small sample sizes

and other confounding factors (Table 1; see Section 4 for detail).

The large PVE credible intervals for male survival and male case–
control, however, indicated that the substantial amount of variance

explained in the initial joint‐sex association tests for survival and, to

a lesser extent, case–control, were driven by females. Consistent

with the joint‐sex analyses above, mean PVE as well as PVE credible

intervals was large for the West Pencil Pine‐specific survival estimate

in females (0.682, 95% CI = 0.052–0.999) and males (0.494, 95%

CI = 0.015–0.998; Supporting Information Figure S5 and Table S4),

suggesting that our simplified survival proxy was necessary to

achieve greater sample sizes and, therefore, power for our associa-

tion analyses.

3.2 | Cancer‐resistant candidate genes

To determine which specific loci were associated with female sur-

vival and female case–control, we identified genes within 100 kb of

the top 0.1% of SNPs from the GEMMA analyses, given that LD is

strong at this scale within the genome (i.e., ~200 kb; Epstein et al.,

2016); this approach identified candidate genes linked to variants

with the largest effect for each trait. For female case–control, nine
genes were identified within 100 kb of a top SNP, and five of these

genes had putative functions; one gene, secretory carrier membrane

protein 1, is implicated in immune function (Table 3). The largest

posterior probability of any top SNP being of large effect was 0.193

and shared across four genes, again indicating that female case–con-
trol was associated with more SNPs of smaller effect (Supporting

Information Table S5). Eight genes were within 100 kb of a top SNP

related to female survival, and two of these genes had putative func-

tions; one gene, ST8 alpha‐N‐acetyl‐neuraminide alpha‐2,8‐sialyl-
transferase 2 (ST8SIA2), is implicated in immune function. ST8SIA2 is

related to chronic inflammation following infection and possessed

the largest posterior probability of being a large‐effect SNP for

female survival (0.995; Supporting Information Table S5).

For the four phenotypes for which the PVE credible intervals

approximately overlapped zero (all three traits in males and female

age at first infection), all SNPs exhibited posterior probabilities of

being a large‐effect SNP ≤0.034, except for male age at first infec-

tion (≤0.069). Similarly, all SNPs associated with West Pencil Pine‐
specific survival exhibited posterior probabilities of being a large‐
effect SNP ≤0.018 for females and ≤0.056 for males. All posteriors

for SNPs associated with these traits were substantially lower than

those found for the two female phenotypes discussed above, indi-

cating that the posterior probability of being a large‐effect SNP

reflected a variant's “significance” to a particular phenotype.

To complement the GEMMA results described above, we identified

candidate genes within 100 kb of the top 0.1% of the SNPs identi-

fied in the ANGSD analyses for survival, age at first infection and

case–control (Supporting Information Table S5). For case–control, 17
genes were identified within 100 kb of a top SNP, and 15 of these

genes had putative functions. Nine of these genes are implicated in

immune/tumour function and are listed in Supporting Information

Table S5; candidates included genes involved with apoptosis (e.g.,

ADAMTS‐like 4 [p < 0.0001], myeloid cell leukaemia 1 [p < 0.0001]),

cell adhesion and signalling (integrin alpha 10 [p = 0.0021]) and non‐
self DNA recognition (RNA Polymerase III Subunit C [p = 0.0021]).

For survival following infection, five genes were identified within

100 kb of a top SNP (Supporting Information Table S5). Four of
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these genes had putative functions, but none were implicated in

immune and/or tumour function. For age at first infection, we identi-

fied nine genes within 100 kb of a top SNP (Supporting Information

Table S5), and seven of these genes had putative functions. Four of

these genes were implicated in immune/tumour function.

The top 1% of SNPs (and corresponding genes and statistics)

from the nine GEMMA analyses and three ANGSD analyses are provided

in Supporting Information Table S5; the top SNPs for the West Pen-

cil Pine‐specific survival estimate are not included.

4 | DISCUSSION

We identified the genetic basis underlying key cancer‐resistant/toler-
ant phenotypes in Tasmanian devils and found that few loci of large

effect explained a large proportion of the phenotypic variance for

female survival. Female case–control was associated with more SNPs

of smaller effect, although relatively few loci (56 rather than thou-

sands of variants) still accounted for a substantial amount of the

total variance (23%; all genotypes accounted for 61.4%). Given the

recent discovery of DFTD and subsequent evidence for a rapid evo-

lutionary response in devils (approximately 4–6 generations; Epstein

et al., 2016), we might expect that selection acted on standing

genetic variation in the form of a few, large‐effect loci. First‐step
(i.e., initial) mutations are often of large effect and confer a large fit-

ness advantage because these mutations outcompete other, less

beneficial mutations in the population (Rokyta, Joyce, Caudle, &

Wichman, 2005), especially when the population is far from the phe-

notypic optimum as would be expected when selection is imposed

by a novel disease. Novel beneficial mutations are unlikely to arise

over short timescales, but large‐effect variants can be segregating in

the population neutrally prior to the onset of novel selective pres-

sures (i.e., prior to DFTD arrival). Our results, at least for female sur-

vival, were consistent with these expectations. In contrast, PVE

TABLE 2 GEMMA association results and genetic architecture statistics

Sex Phenotype
Mean variance explained
by all genotypes (%)

Median variance
explained by
all genotypes (%)

Number
large‐effect SNPs

Mean variance
explained by
large‐effect SNPs (%)

Both Age at infection 7.1 (0.3–21.6) 5.7 50.0 (0–270) 39.1 (0–96.2)

Both Case–control 26.3 (8.8–50.2) 25.1 63.3 (0–269) 37.2 (0–96.1)

Both Survival after infection 70.9 (27.6–99.9) 73.3 7.0 (1–34) 60.6 (26.2–97.3)

Female Age at infection 16.1 (0.9–47.1) 13.1 38.1 (0–203) 36.5 (0–95.5)

Female Case–control 61.4 (21.4–98.4) 61.3 56.1 (0–261) 38.3 (0–95.6)

Female Survival after infection 80.1 (46.7–99.9) 82.4 4.8 (1–14) 76.5 (43.3–98.6)

Male Age at infection 13.3 (0.4–42.5) 10.2 44.1 (0–246) 42.0 (0–96.4)

Male Case–control 23.0 (1.4–64.9) 19.4 52.7 (0–261) 39.6 (0–96.3)

Male Survival after infection 44.8 (1.1–99.6) 39.2 37.0 (0–196) 43.4 (0–96.6)

Notes. The mean variance explained by all genotypes represents the mean of the posterior distribution of the proportion of phenotypic variance

explained. The mean variance explained by large‐effect SNPs represents the percentage of the total variance explained by only large‐effect SNPs (e.g.,

large‐effect SNPs associated with female age at first infection explained 36.5% of the 16.1% total variance explained by all SNPs, or approximately

5.9% of the total variance). Parentheses present 95% posterior credible intervals from the posterior distributions.

F IGURE 2 The proportion of the phenotypic variance explained by all sequenced genotypes for three disease‐related traits. We plotted the
GEMMA posterior distribution of the proportion of phenotypic variance explained by all SNPs (y‐axis) for each phenotype (x‐axis) for females
(pink) and males (blue) independently. Points indicate the mean of the distribution, and bars represent 95% posterior credible intervals
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confidence intervals approximately overlapped zero for all three

traits in males and age of first infection in females.

A smaller male sample size for survival (41 males vs. 69

females; Table 1) suggested that a lack of power for the male sur-

vival association test may explain this sex‐specific difference.

However, similar sample sizes among sexes for case–control (275

males at 10,777 SNPs vs. 289 females at 11,503 SNPs) suggested

that the difference in case–control PVE across males and females

was biological rather than an artefact of our sampling. Whether

this difference in case–control PVE represents a difference in

genomic architecture and/or DFTD‐imposed selection strength (e.g.,

due to differences in fecundity or other life history traits) across

males and females remains uncertain. Sex chromosomes offer one

possible molecular mechanism underlying this case–control differ-

ence. Sex chromosomes can enable the rapid evolution of sexual

dimorphism, and both the Y chromosome (Kutch & Fedorka, 2015)

and the inactivated X chromosome in females (Wang et al., 2016)

have been shown to influence genome‐wide expression, particu-

larly for loci with an immune‐related function. Kutch and Fedorka

(2017) recently detected significant Y‐chromosome‐by‐genetic‐back-
ground epistatic effects following infection, including evidence of

sign epistasis (i.e., reversal of fitness values). If a beneficial female

allele is deleterious in males for a shared trait such as case–con-
trol, the trait heritability in males could be significantly reduced,

consistent with our results. Additionally, males may experience dif-

ferent selective regimes than females because of higher variance

in reproductive success, reducing the segregating genetic variation

for male‐expressed, DFTD‐related traits. Further work is needed to

test these hypotheses and identify the mechanism underlying the

sex‐based differences in PVE we identified in this study.

Prior work showed a rapid evolutionary response in two small

genomic regions on chromosomes 3 and 4 in genes associated with

cell‐cycle regulation, cell adhesion and immune response (Epstein et

al., 2016), but the relationship of these genomic regions to specific

phenotypes was unknown. Consistent with this previous work, we

found that loci involved with immunity, cell‐cycle regulation and cell

adhesion underlay variation in female survival and may thereby drive

cancer resistance (or tolerance; Wells et al., 2017). For example,

Epstein et al. (2016) identified CD146 as a candidate gene, and we

identified ST8SIA2 as a top candidate gene associated with female

survival. Both of these genes are involved with cell adhesion and

often regulate inflammatory response. Collectively, the functions of

these candidate genes, along with the phenotypes they are associ-

ated with, indicate that the devil immune system is evolving to rec-

ognize, and potentially suppress, the growth of tumour cells,

providing a potential mechanism for the recently identified tumour

regression in specific devil populations (Wright et al., 2017).

As global biodiversity is increasingly threatened by anthropogeni-

cally driven changes such as EIDs, effective conservation manage-

ment will likely benefit from an understanding of the genomic

signatures of adaptation in natural populations. Here, we showed

that genomic studies can be applied to natural populations to guide

conservation and management. We found that few loci of large

effect explain variation in survival in the face of a lethal EID. In such

cases, clear management recommendations emerge, such as basing

the selection of individuals for captive breeding programmes on this

genetic information to ensure the survival of the Tasmanian devil.

Discovery of EIDs continues to increase and, together with predic-

tions of rapid and dramatic global change, will necessitate rapid

responses in terms of conservation and management.
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