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Abstract

Background: Transmissible cancers lie at the intersection of oncology and infectious disease, two traditionally
divergent fields for which gene expression studies are particularly useful for identifying the molecular basis of
phenotypic variation. In oncology, transcriptomics studies, which characterize the expression of thousands of genes,
have identified processes leading to heterogeneity in cancer phenotypes and individual prognoses. More generally,
transcriptomics studies of infectious diseases characterize interactions between host, pathogen, and environment to
better predict population-level outcomes. Tasmanian devils have been impacted dramatically by a transmissible
cancer (devil facial tumor disease; DFTD) that has led to widespread population declines. Despite initial predictions
of extinction, populations have persisted at low levels, due in part to heterogeneity in host responses, particularly
between sexes. However, the processes underlying this variation remain unknown.

Results: We sequenced transcriptomes from healthy and DFTD-infected devils, as well as DFTD tumors, to
characterize host responses to DFTD infection, identify differing host-tumor molecular interactions between sexes,
and investigate the extent to which tumor gene expression varies among host populations. We found minimal
variation in gene expression of devil lip tissues, either with respect to DFTD infection status or sex. However, 4088
genes were differentially expressed in tumors among our sampling localities. Pathways that were up- or
downregulated in DFTD tumors relative to normal tissues exhibited the same patterns of expression with greater
intensity in tumors from localities that experienced DFTD for longer. No mRNA sequence variants were associated
with expression variation.

Conclusions: Expression variation among localities may reflect morphological differences in tumors that alter ratios
of normal-to-tumor cells within biopsies. Phenotypic variation in tumors may arise from environmental variation or
differences in host immune response that were undetectable in lip biopsies, potentially reflecting variation in host-
tumor coevolutionary relationships among sites that differ in the time since DFTD arrival.

Keywords: Transmissible cancer, Host-pathogen coevolution, Wildlife disease, Population transcriptomics

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: Chris.Kozakiewicz@wsu.edu
1School of Biological Sciences, Washington State University, Pullman,
Washington, USA
Full list of author information is available at the end of the article

Kozakiewicz et al. BMC Genomics          (2021) 22:698 
https://doi.org/10.1186/s12864-021-07994-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07994-4&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Chris.Kozakiewicz@wsu.edu


Background
Identification of the processes underlying cancer devel-
opment as well as those associated with heterogeneity in
its progression is critical for predicting both individual
and population-level outcomes [1, 2]. Measuring relative
levels of gene expression has been key for identifying
genes and biological pathways associated with cancers
and heterogeneity in cancer phenotypes [3–5]. For ex-
ample, gene expression studies have shown regulatory
dysfunctions associated with tumorigenesis [6], identified
expression profiles associated with therapy resistance
and poor prognoses [7–9], and provided insights into in-
teractions between tumor cells and the immune system
[10]. Similarly, gene expression analyses are frequently
used to understand how organisms respond to environ-
mental stressors, such as thermal stress [11], pollutants
[12], and infections [13]. Variation in gene expression
among individuals can also indicate how biotic and abi-
otic pressures underlie population-level responses. For
example, temperature-dependent susceptibility of sala-
manders to Batrachochytrium dendrobatidis (Bd) is
driven by temperature-mediated shifts in innate versus
adaptive immune gene expression, enabling predictions
of Bd effects on amphibian communities under different
climate change scenarios [14]. The fields of oncology
and wildlife disease intersect in the case of transmissible
cancers, which are clonal, transmissible tumors that are
spread among individuals by the transfer of cancerous
cells [15].
Transmissible cancers are rare; the two most well-

known examples are canine transmissible venereal
tumor (CTVT) and Tasmanian devil facial tumor dis-
ease (DFTD), with other examples found in Syrian
hamsters and mollusks [15, 16]. Whereas CTVT has
relatively benign effects on its hosts both at the indi-
vidual and population levels, DFTD is an aggressive,
highly virulent pathogen with nearly 100% case fatal-
ity rate and has had devastating effects on Tasmanian
devil populations [17–19]. Since its discovery in 1996,
DFTD has spread throughout the entire geographic
range of the Tasmanian devil, leading to rapid popu-
lation declines exceeding 80% [20, 21]. Likely derived
from a Schwann (peripheral nerve) cell cancer in a fe-
male devil [22], mutations leading to downregulation
of MHC class I expression in the tumor [23, 24],
coupled with potential natural killer cell dysfunction
in devils [25], enabled DFTD to evade host allograft
rejection and become transmissible [26, 27]. DFTD is
transmitted via biting, a fundamental behavior in devil
social interactions [28, 29], with DFTD tumors mani-
festing externally and predominantly around the
mouth and face. Following visible presentation of
tumor growth, progression is rapid, leading to death
within 12 months [30].

Despite observations of frequency-dependent trans-
mission leading to early predictions of devil extinction
[18, 31], recent epidemiological models incorporating in-
dividual variation in pathogen load suggest that extinc-
tion is an unlikely outcome [32, 33]. Inter-individual
variation in tumor growth rates and latency periods, to-
gether with a lack of vertical transmission, often enables
females to survive through their first breeding season,
allowing populations to persist at low densities despite
high DFTD prevalence [32]. Female responses contribut-
ing to this success include increased precocial breeding
and fecundity in the first breeding season in DFTD-
affected populations, as well as tolerance of DFTD that
manifests in a slower loss of body condition in DFTD-
infected females relative to males [34–36].
Recent genomic evidence suggests rapid evolutionary

responses of devils to DFTD. Genomic regions putatively
associated with immune response, cancer resistance, and
behavior appear to be evolving within as few as four gen-
erations (approx. 8 years) under positive selection in
DFTD-affected populations [37, 38]. Females may also
be adapting to DFTD through greater tolerance, with
several associated genes of large effect detected in a
genome-wide association study [39]. Although putative
functions of candidate genes identified in these studies
suggest biological functions that may underlie variation
in host fitness, mechanistic differences in response to in-
fection between sexes remain unclear. Additionally, iso-
lated cases of spontaneous tumor regression have been
observed in the field, the molecular underpinnings of
which appear to be in regulatory regions because no
non-synonymous substitutions have been found in either
the devils or tumors [40, 41]. Further, phenotypic re-
sponses in devil populations following DFTD arrival
have been observed within one or two generations [36],
suggesting existing plasticity and not a purely adaptive
response.
Studies comparing transcriptomic and genomic vari-

ation are ideally suited for elucidating the molecular
basis for variation in devil responses to DFTD. However,
previous gene expression studies of DFTD have aimed
to identify cell type of origin [22] or targeted specific sets
of immune-related genes, primarily in laboratory-
cultured DFTD cell lines [e.g., 41–44]. Thus, there is a
need to understand variation in both host and DFTD
tumor gene expression in natural populations, particu-
larly with respect to observed variation in DFTD-
associated impacts on hosts.
To investigate the role of gene expression variation in

manifestation of DFTD, we performed a population
transcriptomics study of wild Tasmanian devils from
DFTD-affected populations. We sequenced mRNA from
normal tissues in both healthy and DFTD-infected
devils, as well as tissues from DFTD tumors, and tested
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predictions of differential gene expression with respect
to sex and population that could explain individual- and
population-level responses to disease. We predicted that
1) similar to other types of cancer, DFTD exhibits gene
expression that is distinct from normal host tissues, 2)
the severe disease associated with DFTD infection in-
duces significant responses in infected hosts as evi-
denced by expression differentiation between infected
and uninfected hosts, 3) previously observed differences
in DFTD tolerance between host sexes will be reflected
in inter-sex variation in gene expression, and 4) spatial
genetic variation in both devils and DFTD produces
variation in gene expression across geographic localities.

Results
Sequencing, alignment, and transcript assembly
To identify expression differentiation across hosts and
tumor and test the four predictions above, we sequenced
mRNA libraries from 58 tissue samples from 39 devils
(20 males, 19 females). Samples were collected from wild
devils between 2016 and 2018 from three distinct local-
ities (Fig. 1): Black River (BR; first infected in 2016),
Takone (TKN; first infected in 2011) and West Pencil

Pine (WPP; first infected in 2006). Samples comprised
lip biopsies from 20 devils putatively uninfected by
DFTD, and paired lip and tumor biopsies from 19 devils
(38 samples) clinically infected with DFTD. Volumes of
sampled tumors did not significantly differ among local-
ities (analysis of variance: P = 0.365) We generated a
total of 1,168,476,356 sequence reads, which were re-
duced to 1,167,199,873 following quality trimming and
filtering (per sample mean = 20,124,136; SD = 5,905,604).
Reads aligned to the reference genome at an average of
91.9% per library (SD = 3.4%), with 63.1% (SD = 3.9%) of
bases mapping to annotated mRNA regions.

Differential gene expression
Between devil lip and DFTD tissues
For the comparative analysis of differential gene expres-
sion between lip and tumor tissues, we retained a total
of 14,807 expressed genes after filtering (Additional file 8:
File S8). We found a dramatic difference in gene expres-
sion between lips and tumors (11,149 significant differ-
entially expressed genes at a false discovery rate [FDR]
of 0.05), which were clearly delineated as multidimen-
sional scaling clusters (Fig. 2a; Additional file 5: Fig. S5).

Fig. 1 The east-west spread of DFTD since its origin in 1996 (approximate location indicated with blue star). Approximate location of the disease
front over time is indicated as blue lines labelled by year. Study locations – West Pencil Pine (WPP), Takone (TKN), and Black River (BR) – are
indicated. Lines depicting disease front adapted from [45]

Kozakiewicz et al. BMC Genomics          (2021) 22:698 Page 3 of 19



Fig. 2 (See legend on next page.)
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Because the number of differentially expressed genes for
this contrast was so large, we applied a log2 fold change
(log2FC) minimum threshold of ±2 to focus our efforts
on only the most highly differentially expressed genes.
With this more stringent filter, we identified 4234 genes
that were still differentially expressed between tissue
types, with 2286 upregulated and 1948 downregulated in
DFTD tumors.
To evaluate variation among localities in genes differ-

entially expressed between lip and tumor, we analyzed
differential expression between lips and tumors for each
locality separately and detected similarly high numbers
of differentially expressed genes. We identified 4282
genes differentially expressed at log2FC ± > 2 in BR (646
DE genes unique to BR), 4238 in TKN (268 unique), and
4181 in WPP (350 unique).
Using the PANTHER Overrepresentation Test [46],

we identified numerous biological processes that were
significantly enriched among genes that were highly
differentially expressed between tumor and lip tissues
(Additional file 6: Fig. S6). Many of these gene onto-
logical (GO) terms were clearly associated with cellu-
lar differentiation due to the epidermal and skeletal
muscle tissue present in lips as opposed to the
Schwann cell (a peripheral nerve cell) origin of
DFTD. For example, genes upregulated in tumors
were enriched for nervous system processes and
extracellular matrix organization but depleted in DNA
damage response, transcription, and protein metabol-
ism. Genes downregulated in tumors were enriched
for muscle cell development and function but de-
pleted in double-strand break repair, negative cell
cycle regulation, transcription, and translation. Of
genes that were differentially expressed between lips
and tumors that were unique to a given locality, only
BR yielded significantly enriched biological processes.
Overrepresented processes were associated with regu-
lation of cell shape and signaling, whereas underrep-
resented processes were associated with gene
expression and metabolism. Full lists of significantly
over- or underrepresented GO-terms are provided in
Additional file 9: File S9.
Gene Set Enrichment Analysis revealed 16 positively

and 163 negatively enriched Reactome pathways in
DFTD at FDR = 0.01 (Fig. 3). Summarization via Enrich-
mentMap clustering highlighted a variety of generalized
differences between tumor and lip tissues. The largest
pathway gene set cluster contained 95 pathways and was

annotated “proteasome degradation signaling” (Fig. 3).
This cluster contained only four pathways that were
positively enriched in DFTD, which were associated with
the mitotic cell cycle. The remaining pathways in this
cluster were negatively enriched in DFTD, including
many that were associated with the immune system and
various signaling pathways such as Notch, slits and
robos, and DNA damage checkpoints (both dependent
and independent of P53). A closely related cluster anno-
tated as “DNA repair HDR”, contained pathways associ-
ated with homology-directed DNA repair that were
positively enriched in DFTD, as well as pathways nega-
tively enriched in DFTD associated with transcriptional
regulation by TP53 (Fig. 3). Clusters entirely positively
enriched in DFTD were associated with collagen forma-
tion and extracellular matrix organization, cilium forma-
tion, and neuron function (Fig. 3; see Additional file 10:
File S10 for full list of enriched gene sets and annotated
gene set clusters).

Among devil lip tissues
For comparison among lip tissues only, we retained a
total of 14,165 expressed genes (Additional file 8: File
S8). Overall, we found little evidence of differential gene
expression between lips from devils of different sex or
based on infection status, irrespective of sampling local-
ity. No genes were differentially expressed in any of our
contrasts between DFTD-infected devils and those from
clinically healthy devils, irrespective of host sex (Fig. 2b).
However, when contrasting host sexes directly regardless
of infection status, we identified seven differentially
expressed genes. Specifically, we observed significant up-
regulation of FRMD7, HMGB3, MECP2, and three
uncharacterized novel genes in females, and upregula-
tion of one uncharacterized novel gene in males (see
Additional file 13: Table S13 for full names and descrip-
tions of gene symbols). No additional genes differentially
expressed between males and females were identified
when considering DFTD-infected and uninfected devils
separately. Both groups exhibited significant upregula-
tion in females of FRMD7, HMGB3, and two uncharac-
terized novel genes, whereas MECP2 was upregulated in
females only among uninfected individuals. Among lo-
calities, we identified 1564 genes differentially expressed
between TKN and BR (897 up and 667 downregulated
in TKN) but no evidence of differential expression in
lips between any other pair of localities. Genes differen-
tially expressed between TKN and BR were associated

(See figure on previous page.)
Fig. 2 Variation in gene expression among a) DFTD tumor and Tasmanian devil lip biopsies, b) lip biopsies sampled from devils of different sex
and DFTD infection status, and c) DFTD tumors sampled from devils of different sex and from different localities. Each plot was generated using
the 500 genes exhibiting the most expression variation (i.e., the highest standard deviation across all samples) from each differential
expression analysis
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with immune system processes and cellular developmen-
tal processes (upregulated in BR), as well as lipid metab-
olism (upregulated in TKN) (Additional file 9: File S9).
Six gene sets were positively enriched in BR relative to
TKN and were associated with phagocytosis and T-cell
activation (Additional file 10: File S10). For all other lip-
only contrasts, there were insufficient numbers of differ-
entially expressed genes for GO-term enrichment ana-
lysis. Similarly, no significantly enriched pathway gene
sets (FDR = 0.12–1.0) were identified for any other lip-
only statistical contrasts.

Among tumor tissues
In DFTD tumors, we retained 14,204 expressed genes
following filtering (Additional file 8: File S8). Genes
expressed in DFTD but not lip tissues, and vice-versa,
were almost entirely linked to functions associated with
the cell type of origin (i.e., Schwann vs muscular/epider-
mal cells). When contrasting tumors infecting devils of
opposite sex, we found no genes that were significantly
differentially expressed between sexes across all local-
ities, but we observed some locality-specific differences.
Although no genes were differentially expressed between
tumors from different host sexes in BR, 17 genes were
differentially expressed in tumors between sexes in
TKN, all of which were upregulated in tumors from
male devils relative to females: SYNE2, CLUH, PARS2,

VPS13A, KIAA1586, TASOR2, SLC12A5, TRRAP, DIP2A,
BRPF1, PCNX3, and six uncharacterized novel genes. In
WPP, only MRPL53 was differentially expressed – up-
regulated in tumors infecting female devils.
Direct contrasts between localities – irrespective of

host sex – revealed substantial differences in tumor gene
expression. In general, the greatest difference was be-
tween BR and WPP, with TKN being somewhat inter-
mediate of the two other localities (Fig. 2c,
Additional file 7: Fig. S7). In all, 3825 genes were differ-
entially expressed between BR and WPP, of which 1635
were upregulated and 2190 were downregulated in BR
compared to WPP. In BR tumors relative to TKN, 414
genes were upregulated, and 548 genes were downregu-
lated. In WPP tumors relative to TKN, 823 genes were
upregulated, and 416 genes were downregulated.
All three pairwise contrasts of tumors between local-

ities were significantly enriched for biological processes.
All processes overrepresented among genes upregulated
in BR relative to TKN were also overrepresented among
genes upregulated in BR relative to WPP – these were
broadly associated with translation and protein synthesis.
Additional processes overrepresented among genes up-
regulated in BR relative to WPP were predominantly as-
sociated with other metabolic and biosynthetic
processes. Genes downregulated in BR relative to WPP
were disproportionately associated with chromosome

Fig. 3 Enrichment Map showing result from gene set enrichment of DFTD tumor tissue compared to normal devil lip tissue. Nodes represent
gene sets; red indicating significant positive enrichment in DFTD, and blue indicating significant negative enrichment in DFTD. Edges indicate
sharing of genes between gene sets, with gene set clusters, delineated by ellipses, defined by large numbers of shared genes. Cluster
annotations are derived from highly repeated words among gene set names
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organization and gene expression. Similarly, in TKN tu-
mors relative to WPP, downregulated genes were also
associated with chromosome organization and gene ex-
pression regulation, whereas upregulated genes were as-
sociated with transcription, translation, and various
metabolic and biosynthetic processes.
We identified significantly enriched Reactome pathway

gene sets in comparisons between DFTD tumors sam-
pled from different host sexes in TKN, as well as in
comparisons among tumors from different localities gen-
erally. The most pronounced difference (in terms of
both the number of enriched pathways as well as the
magnitude of enrichment) was between BR and WPP,
with TKN intermediate of the two but generally more
similar to BR. Interestingly, the pathway gene set clusters
positively enriched among tumors from WPP compared
to other localities were characteristic of those positively
enriched in DFTD compared to devil lip tissue. We
identified five clusters of pathway gene sets that were
significantly enriched in all three pairwise contrasts be-
tween localities (Fig. 4). The largest of these clusters –
“regulation mediated degradation” – contained 119 path-
ways and was approximately equivalent to the largest
cluster identified in the DFTD-lip contrast above. Ac-
cordingly, it contained pathways predominantly associ-
ated with cell cycle checkpoints and programmed cell
death, and the innate and adaptive immune system;
these pathways were all significantly negatively enriched
in WPP tumors compared to those from TKN and BR.
A small number of pathways in this cluster associated
with the mitotic cell cycle were positively enriched in
WPP compared to other localities (Fig. 4; see Add-
itional file 10: File S10 for full list of enriched gene sets
and annotated gene set clusters).
Of the three between-locality tumor contrasts, the

TKN-BR contrast appeared to be the most distinct, with
four pathway gene set clusters that were significantly
enriched only in TKN-BR, while eight clusters were
enriched in the other two between-locality contrasts but
were not enriched in TKN-BR (Fig. 4). Clusters unique
to the TKN-BR contrast included many pathways associ-
ated with the mitotic cell cycle (Fig. 4). Clusters that
were lacking only from the TKN-BR contrast included
pathways associated with protein folding and transport,
metabolism, negative regulation of transcription, and au-
tophagy (Fig. 4).
In general, we observed no enrichment of pathways

among tumors sampled from devils of different sexes, ei-
ther across all localities or within localities individually,
with the exception of TKN. As reflected in Fig. 2c, gene
set enrichment between tumors sampled from different
sexes from TKN generally mirrored enrichment between
WPP and BR, with TKN males negatively enriched for
pathways that were also negatively enriched in WPP

when compared to BR. Overall, at FDR = 0.05, there
were four pathways significantly positively enriched and
21 negatively enriched in TKN males compared to fe-
males. Pathways positively enriched in TKN males were
associated with chromatin organization and mitotic pro-
metaphase. Pathways negatively enriched in TKN males
were associated with eukaryotic and mitochondrial
translation and protein synthesis, nonsense-mediated
decay, and respiratory electron transport.

Genotypic variation and associations with gene
expression
To identify genotypic variation potentially associated
with variation in gene expression, we genotyped indels
and single nucleotide polymorphisms (SNPs) from the
transcriptome sequences. Following filtering (see Add-
itional file 3: Text S3), we retained 9559 SNPs and 6013
indels in devils, and 473 SNPs and 1554 indels in tumors
(including 100 alleles private to BR, 121 to TKN, and
112 to WPP) for analysis. For both tissue types, we
found evidence for weak genetic structure when specify-
ing sample localities a priori, though this structure was
more pronounced in devils than in tumors (Fig. 5). How-
ever, when identifying genetic clusters purely from SNP
variation, only one cluster each was supported for both
devils and tumors.
We used SnpEff [47] to annotate all genotyped tumor

variants according to their positions with respect to
known genes and each variant’s predicted impact on
gene function. 4203 variant-gene effects were predicted
in tumors, comprising 2264 variants associated with
1248 genes (note: loci may contain multiple variants,
and variants may have multiple effects involving differ-
ent genes). Of these variant-gene effects, 1514 involved
variants located in intergenic regions, likely due to se-
quencing of noncoding mRNA, unannotated exons, or,
potentially, contamination by genomic DNA. By com-
parison, similar proportions of intergenic variants have
been detected in other RNA-seq studies [e.g., 48, 49].
Most other variants were also in non-coding regions:
159 were < 5 kb upstream, 20 were located in the 5′
UTR, 211 were intronic, 392 were located in the 3′
UTR, and 1617 were < 5 kb downstream. Only 290 vari-
ants were in exons and were not significantly enriched
for any biological process. Of these exonic variants, 77
were identified as missense variants, seven were non-
sense variants, and none were nonstop variants.
For 4088 tumor genes that were differentially

expressed between any pair of localities, 444 contained
variants with predicted effects on gene function. By
comparison, 920 of 10,116 non-differentially expressed
genes also contained variants with predicted effects, sug-
gesting that variant-gene effects were equally likely to be
detected within differentially expressed compared to
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Fig. 4 (See legend on next page.)
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non-differentially expressed genes. Following filtering for
biallelic variants, we retained a total of 413 gene-
expression-locus combinations for Kruskal-Wallis tests.
Including loci with multiple predicted effects, these com-
prised 238 intergenic, 27 upstream, three 5′ UTR, 47 in-
tronic, 88 3′ UTR, 357 downstream, and 89 exonic
variants. However, after FDR adjustment, we found no
significant associations between any variant on the ex-
pression of the genes it was predicted by SnpEff to
effect.

Discussion
As predicted, substantial differentiation exists in gene
expression between lip and tumor tissues. We observed
differential expression patterns consistent with DFTD’s
origin as a Schwann cell tumor [22], including genes in-
volved in nervous system functions such as synaptic sig-
naling and ion transport, as well as characteristics
common to cancers [5]. Lips, in contrast, had differen-
tially expressed genes characteristic of muscle and epi-
dermal tissue function. Overall transcriptional variation
appeared to be higher among lip tissues compared to
that observed among tumor tissues, potentially due to
greater genetic variation among devils or exposure of lip
tissues to greater environmental variation. However, in
lip tissues, we found surprisingly little transcriptional
variation associated with sex or infection status, despite
clear sex-biased differences in resistance and tolerance
of DFTD [34, 39]. Perhaps most interestingly, we found
significant variation in gene expression among DFTD tu-
mors collected from different localities, potentially asso-
ciated with different tumor strains, environmental effects
(either within-host or extrahost) or host-pathogen co-
evolutionary relationships. However, we found no associ-
ation between detected SNP variants in transcribed
genomic regions and gene expression, consistent with
results from previous studies that showed variants in
regulatory regions [40], which are not captured in RNA-
seq approaches, likely affect observed phenotypic
variation.

Gene expression characteristics of DFTD
Despite considerable genotypic and phenotypic diversity
among cancers [50], there are relatively common muta-
tional drivers that are necessary for the genesis and pro-
liferation of cancerous cells. Functions of these drivers

include: the sustenance of proliferative signaling, evasion
of growth suppressors, resistance to apoptosis, induction
of angiogenesis, activation of invasion and metastasis, re-
programming of energy metabolism, and evasion of im-
mune response [51, 52]. Similarly, we observed
differential expression of genes and enrichment of path-
ways in DFTD associated with the extracellular matrix,
the cell cycle, DNA replication and repair, and immune
function. The extracellular matrix is fundamental to
maintaining tissue homeostasis. Dysregulation of the
extracellular matrix can both cause – and occur as – a
response to the development and proliferation of cancer-
ous cells, facilitating uncontrolled proliferation, angio-
genesis, tissue migration and invasion, and metastasis
[53–55]. Cell cycle ‘checkpoints’ detect DNA damage or
errors in DNA replication and chromosome organization
and are regulated by critical tumor suppressor genes that
prevent proliferation of defective and potentially cancer-
ous cells [56]. A key example of such a gene is TP53,
which is activated in response to DNA damage, initiates
the inhibition of cell proliferation, and regulates apop-
tosis [57]. Loss of TP53 function is common to many
cancers [57, 58]. We found various pathways associated
with TP53, such as G1 and G2 cell cycle checkpoints, to
be downregulated in DFTD relative to normal lip tissue.
In turn, upregulation of pathways associated with mi-
tosis and the cell cycle that likely lead to increased cell
proliferation were also found in DFTD.
Despite downregulation of cell cycle checkpoint and

apoptosis pathways, we observed upregulation of
homology-directed DNA repair (HDR) in DFTD. Dys-
functional HDR often results in genomic instability and
can lead to carcinogenesis [59, 60]; however, cancers can
become resistant to standard cancer treatments aimed at
inducing DNA damage through reactivation of HDR,
emphasizing that cancer cell proliferation is not
dependent on HDR suppression [61]. Active yet dysfunc-
tional HDR can lead to errors in double-stranded break
repair that produce gross chromosomal rearrangements
[62], such as those that are evident in DFTD [21, 24, 63].
Although all cancers exhibit some form of immune

avoidance, DFTD and other transmissible tumors are
unique in that they can evade host MHC recognition of
non-self-cells [27]. In DFTD, MHC avoidance is
achieved through the ERBB-STAT3 axis [44]. Specific-
ally, DFTD likely became transmissible when a normal

(See figure on previous page.)
Fig. 4 Three-way enrichment Map showing gene set clusters (nodes) that were significantly enriched in DFTD tumors between pairs of localities.
Node colors indicate which between-locality contrasts were enriched for gene sets within each cluster (e.g., clusters showing all three colors
contain gene sets that were enriched in all three pairwise contrasts between localities). Node border colors indicate average normalized
enrichment scores (NES) for gene sets in TKN tumors relative to BR tumors. Edges represent genes shared between gene sets from different
clusters. Clusters are annotated and labelled according to the number of genes and gene sets they contain. Cluster annotations are derived from
highly repeated words among gene set names
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Fig. 5 Discriminant analyses of principal components, showing weak genetic structure in a) Tasmanian devils and b) devil facial tumor disease
from West Pencil Pine (WPP), Takone (TKN), and Black River (BR)
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Schwann cell tumor gained a variant exhibiting overex-
pression of ERBB3, which overactivates the transcription
factor STAT3 and blocks the production of MHC I [26,
27, 44]. Without MHC I expression, DFTD cells are un-
able to be recognized as foreign by the host. Similar to
previous work, we found the differential expression of
other genes associated with STAT3, including upregula-
tion of MMP2, HDAC5, and downregulation of PTGIS
[44]. However, in contrast to this previous study that
found upregulation of the TRIM28 protein, which is typ-
ically activated in response to STAT3 signaling, we de-
tected slight downregulation in expression of this gene.
TRIM28 is often overexpressed in cancer [64]; however,
its expression has been shown to be predictive of tumor
class in human glioblastomas [65], and positively corre-
lated with tumor size and development stage, whilst be-
ing negatively correlated with patient survival in human
hepatocellular carcinoma [66]. Lack of detectable
TRIM28 overexpression may thus reflect size or develop-
mental stage variation among the sampled DFTD
tumors.
We also observed downregulation of Notch signaling,

which is critical to Schwann cell development and re-
quired for differentiation of Schwann cell precursors
(SCP). Notch activation upregulates ERBB2, which acts
as a receptor for NRG1, which in turn is critical for tran-
sitioning SCPs to immature Schwann cells [67, 68]. In
the absence of Notch signaling, a scarcity of ERBB2 re-
ceptors would lead to reduced sensitivity of SCPs to
NRG1, despite its overexpression. Dysfunction of these
pathways suggests a decoupling of DFTD cell prolifera-
tion from typical Schwann cell developmental controls.

Gene expression in devil lip tissue is not associated with
infection status or sex
DFTD infection has no effect on gene expression in devil
lip tissue. This is surprising as DFTD has significant ef-
fects on host physiology and can elicit host immune re-
sponse [69]. Tumor growth leads to increasing
metabolic demands concurrent with difficulty feeding,
ulcerations, metastases, and secondary infections that
produce a progressive loss of body condition and almost
universal mortality within 12 months following visible
tumor development [18, 30, 34]. In humans, gene ex-
pression in normal tissues adjacent to tumors reflects a
state that is intermediate between healthy and cancer-
ous, with commonly expressed pathways including pro-
inflammatory responses induced by the tumor [70]. We
chose lip tissue due to its proximity to the mouth, where
DFTD allografts typically implant, believing that changes
in gene expression would be greatest in tissues local to
tumors. However, DFTD tumors do not always occur on
the lips or in the mouth, and there was likely variation
in the proximity of lip biopsies to the site of tumor

growth. Ethical and experimental concerns necessitated
a consistent sampling strategy for healthy tissues, pre-
venting individual adjustments of biopsy locations to ac-
commodate variation in tumor location. In addition, lip
tissues may have been inappropriate for detecting sys-
temic immunological or metabolic changes. For ex-
ample, systemic immune responses associated with
tumor growth tend to involve the accumulation of im-
mune cells in the peripheral blood or lymphoid tissues,
rather than in the epidermis [71]. Biological functions
associated with immune response were not underrepre-
sented in lip tissues, suggesting that the lack of differen-
tial expression was not specifically due to a lack of
immune expression in these tissues.
Despite a lack of a direct immune response in devil

lips to DFTD infection, we observed upregulation of
immune-associated genes in BR relative to TKN devils,
irrespective of infection status. This difference is not ne-
cessarily associated with DFTD and may be due to dif-
ferential exposure to other infectious agents or innate
differences in immune function between genetically dis-
tinct populations. However, DFTD is an overwhelmingly
strong selective force in devils [37, 39, 72] and likely
drives immune adaptation in affected populations. Fur-
ther, documented immune responses to DFTD [69] sug-
gest that differential host immune expression between
localities may alter the microenvironment faced by in-
vading tumor cells. We thus recommend further gene
expression studies targeting immunologically active host
cells; specifically, to investigate systemic host responses
to DFTD using blood samples as well as a refined ap-
proach for detecting localized responses by targeting
healthy tissues < 1 cm from DFTD tumors.
Male and female devils exhibit different responses to

DFTD, with females losing body condition at a signifi-
cantly slower rate when infected and genetic evidence of
adaptations that result in greater survival rates among
females [34, 39]. Although DFTD infection produced no
transcriptomic response in lip tissues for either sex, we
found several genes that were differentially expressed be-
tween males and females generally, regardless of infec-
tion status. Consistent with previous work comparing
sexes in uninfected devils [73], the X-linked gene
FRMD7 was downregulated in males (log2FC = − 4.01).
FRMD7 is putatively involved in fatty acid metabolism
and has been associated with skin disorders, serving as a
potential factor in differential susceptibility between
sexes to DFTD [73]. Additionally, we found six other
genes that were differentially expressed between sexes.
Four of these were uncharacterized, while HMGB3 and
MECP2 – both also X-linked – were downregulated in
males. HMGB3 is a DNA-binding protein that helps
maintain stem cell populations and is overexpressed in
some human cancers via the Wnt signaling pathway [74,

Kozakiewicz et al. BMC Genomics          (2021) 22:698 Page 11 of 19



75]. Further, HMGB3 affects nucleic acid recognition
and innate immune system activation, and its upregula-
tion has been associated with allograft rejection [76–79].
Therefore, higher baseline expression of HMGB3 in fe-
male devils may enhance the innate immune response to
DFTD relative to males. Recently, MECP2 was identified
as an oncogene through induction of the MAPK and
PI3K growth factor signaling pathways and is overex-
pressed in many human cancers [80]. However, it is un-
clear how MECP2 expression in normal host tissues
could affect DFTD progression.

DFTD tumor gene expression varies geographically
We observed considerable variation in tumor gene ex-
pression among the sampled localities, which varied in
the length of time since DFTD arrival. Interestingly,
gene expression patterns that we observed in DFTD
relative to host lips were more intense (i.e., more differ-
entially expressed genes and greater log2 fold-changes)
in WPP tumors – where DFTD has been present longest
among our study sites – than in other populations. Spe-
cifically, WPP tumors exhibited upregulation of mitosis
and downregulation of translation, DNA damage check-
points, and immune function relative to tumors from
BR, which had the shortest time since DFTD arrival.
Varying intensity of DFTD-characteristic gene expres-
sion may be due to differences in the ratios of normal-
to-tumor cells within tumor biopsies, potentially driven
by subtle differences in tumor morphology among local-
ities (e.g., differences in the extent to which tumor tissue
is delineated from the surrounding host tissue, or the
distinctness of tumor margins). On the other hand, ex-
pression changes in cancer-associated genes are not only
linked to tumorigenesis but can be directly correlated
with tumor aggressiveness and overall prognoses in hu-
man cancer patients [81, 82]. Meanwhile, incrementally
greater gene expression changes through time can pro-
duce progressively more severe phenotypes or reflect
more advanced stages of tumor development [e.g., 83,
84]. The strength of expression in DFTD-associated
pathways therefore may be associated with DFTD
phenotypic variation, such as growth rates, although no
such differences (nor differences in tumor morphology)
between the studied localities have been documented.
Gene expression in tumors from TKN reflected an

intermediate state between WPP and BR but were differ-
entiated by sex (Fig. 2c; Additional file 7: Fig. S7). That
is, tumors from TKN males exhibited patterns of gene
expression that were characteristic of WPP tumors from
both sexes, and tumors from TKN females resembled
male and female tumors from BR (see Fig. 2c). Perhaps
coincidentally, previous work demonstrating more rapid
body condition loss in DFTD-infected males than in fe-
males was conducted in TKN [34], while no similar

analysis of host body condition has been performed for
either of our other study sites. We do not have sufficient
serial volume measurements for the tumors in our study
to directly associate gene expression with tumor growth
rates. In the absence of data comparing tumor growth
rates or host body condition between TKN, WPP, and
BR, it is difficult to establish a link between relative
levels of DFTD-characteristic gene expression and the
severity of disease.
Although it remains unclear whether transcriptional

variation in DFTD occurs among localities as a result of
neutral or adaptive differences among strains, there is an
interesting temporal trend that correlates with expres-
sion changes. DFTD first arrived in WPP in 2006 and
has thus had the longest amount of time to adapt to
devils in that locality. DFTD then emerged in TKN in
2011, and tumors there showed intermediate expression
values between WPP and BR, where DFTD has been for
the shortest time (since 2016). Thus, expression vari-
ation among study sites may reflect ongoing DFTD
adaptation to devils within populations, which them-
selves have demonstrated rapid evolutionary responses
to DFTD [37, 39]. Additionally, multiple DFTD lineages
with differing degrees of pathogenicity have been ob-
served. Specifically, in WPP, DFTD arrival in 2006 was
characterized by initially low mortality rates compared
to localities that had experienced DFTD for longer [85].
Karyotype analysis confirmed the existence of a distinct
tetraploid strain at WPP that was replaced by a more
virulent diploid strain in 2012, causing an immediate in-
crease in disease prevalence and population decline [86].
In addition, recent phylodynamic analysis indicates mul-
tiple tumor lineages exhibiting differences in transmis-
sion rates, demonstrating epidemiological variation
among distinct tumor strains [87]. Given its recent
emergence, our BR tumor samples may represent a
novel DFTD lineage present near the advancing disease
front. Such a lineage was not observed at a broad spatio-
temporal scale [87] but more intensive sampling of the
most recently emerged tumors near and on the west
coast of Tasmania provides evidence of spatially struc-
tured tumor lineages in this region [88]. Specifically,
WPP contained tumors from multiple distinct lineages,
whereas tumors sampled from further west (closer to
the vicinity of our TKN and BR sites) almost entirely
comprised a single lineage [88]. Spatial structuring of
tumor lineages may therefore explain the observed tran-
scriptional variation among localities.
We detected weak genetic structure in tumors that

broadly reflected transcriptomic variation among local-
ities and may reflect different tumor strains. However,
we acknowledge that the persistence of a small number
of host variants in the tumor dataset may produce a re-
sidual signal of host population structure, despite
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rigorous bioinformatic filtering to exclude known devil
variants genotyped from lip RNAseq data as well high-
coverage whole genome sequences (see Additional file 3:
Text S3). Further, although we identified a number of
variants in tumors that were predicted to affect the func-
tion of genes differentially expressed among localities,
no significant associations were detected. Thus, tran-
scriptional variation in tumors may be purely regulatory
in origin, or we may have lacked sufficient statistical
power (19 samples) to identify genotype-expression asso-
ciations. Alternatively, population genetic structure and
adaptive and plastic responses to the local environment
in hosts can produce variation in immune function that
drive differential responses to wildlife disease [14, 89].
Our study sites have similar vegetation communities and
experience similar climatic conditions but decrease in
elevation from east to west. Region-specific adaptation
of devils to local environmental conditions exists, as well
as significant selection imposed by DFTD following its
arrival in naïve populations [37, 39, 72]. Different tran-
scriptomic responses of DFTD to devils from different
localities may thus also be explained by immunological
variation among devil populations that is driven by en-
vironmental differences that lead to differential expo-
sures to non-DFTD infectious agents.

Conclusions
Characterization of DFTD gene expression and our broad
analysis of transcriptomic variation in devils and DFTD
points to a potential link between the relative degrees of
DFTD-characteristic gene expression patterns and host
population. Whether this variation is due to distinct tumor
strains with differing phenotypes or by locally specific differ-
ences in host tolerance/resistance remains unclear. None-
theless, geographic variation in gene expression among
tumors highlights the potential for ongoing devil-tumor evo-
lution. DFTD arrived at each of the populations in this study
at different times, and thus the coevolutionary processes that
influence the nature of host-tumor molecular interactions
may be at different stages for each. Alternatively, or perhaps
concurrently, environmental variation among localities may
also be influencing spatial variation in tumor gene expres-
sion. To separate these alternative explanations would re-
quire replicated sampling of time points with respect to
DFTD arrival across different localities. Given the well-
documented east-to-west spread of DFTD over a 25-year
period, this system is highly suited to exploration of host-
pathogen coevolutionary relationships at various times since
disease arrival.

Methods
Sample collection
Lip and tumor tissues were collected as 3 mm biopsies
from live, wild Tasmanian devils between 2016 and 2018

from three locations in northern Tasmania, Australia:
Black River (BR), Takone (TKN), and West Pencil Pine
(WPP) (Fig. 1; Additional file 1: Table S1). Detailed de-
scriptions of ethically-approved trapping protocols can
be found in Hawkins et al. [19] and Hamede et al. [86].
All research involving use of animals and field activity
was performed under University of Tasmania ethics ap-
proval A13326 and WSU IACUC approval ASAF 6796.
Normal (i.e., noncancerous) tissue from inside of the lip
was chosen due to its proximity to where DFTD tumor
allografts typically implant, increasing the likelihood of
detecting localized tissue responses in DFTD-infected
animals, while ensuring both animal and handler safety.
Where individuals had multiple tumors, biopsies were
taken from the largest tumor. All tumor biopsies were
taken from ulcerated tumors and comprised only solid
tissue that was free from necrosis or secondary infection.
Sampled tumors were measured, and tumor volumes
were calculated using the ellipsoid volume equation (

volume ¼ 4
3 � π � length

2 � width
2 � depth

2 ). Among-
population differences in tumor volume were evaluated
using an analysis of variance. For each population, lip bi-
opsies from at least 3 DFTD-infected and 3 uninfected
devils of each sex were collected, along with correspond-
ing tumor biopsies from every infected devil. All biopsies
were immediately preserved in RNAlater, kept at − 20 °C
for up to two weeks while in the field, and subsequently
stored at − 80 °C until RNA extraction.

RNA extraction, library preparation, and sequencing
We extracted whole RNA from lip and tumor samples
in two batches. The first batch contained samples col-
lected in 2016, and RNA extraction was performed using
a combination of Nucleospin RNA extraction kit
(Macherey-Nagel, Easton, PA, USA), Qiagen Allprep
DNA/RNA Mini Kit (Qiagen Inc., Hilden, Germany) and
a standard Trizol-chloroform protocol. The second
batch contained samples collected in 2018, and RNA ex-
traction for this batch was performed using the Trizol-
chloroform protocol. All extracted RNA was treated
with DNAse prior to library preparation to remove DNA
contamination.
We prepared and sequenced mRNA-seq libraries in

three batches. Batches 1 (n = 4) and 2 (n = 12) com-
prised samples collected in 2016; we prepared these li-
braries using the NEBNext Poly(A) mRNA Magnetic
Isolation Module (New England BioLabs, Ipswich, MA,
USA) according to Fraik et al. [73]. Batch 3 (n = 42)
comprised all samples collected in 2018, with library
preparation performed by the Washington State Univer-
sity Genomics Core in Spokane using the Illumina Tru-
Seq Stranded mRNA Library Prep Kit and assessed for
quality using a Fragment Analyzer (Agilent, Santa Clara,
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CA, USA). Both library preparation kits employ a PolyA
tail selection approach that isolates mRNA from riboso-
mal and globin RNAs. For each batch, samples were
pooled together and sequenced for 100 bp paired-end
reads using an Illumina HiSeq 2500: batch 1 on a single
lane, batch 2 across two lanes, and batch three across
four lanes. All sequencing was performed by the Wash-
ington State University Genomics Core, Spokane, WA.
We accounted for potential batch effects attributable to
use of different kits and sequencing lane effects through-
out all analyses (see below).

Sequence alignment and transcript assembly
We conducted initial quality screening of raw sequen-
cing reads using FastQC and assessed study-wide se-
quencing quality using MultiQC. To trim and filter
reads for quality, we used the TrimGalore wrapper with
relatively relaxed settings due to the documented nega-
tive effects of stringent filtering on RNAseq analyses
[90]. Specifically, we trimmed adapter sequences and
ends with a Phred quality score < 10 and removed reads
< 30 bp long.
We performed sequence alignments and assembled

transcripts according to protocols recommended by Per-
tea et al. [91]. Using Hisat2 v 2.1.0 [92], we aligned the
trimmed reads to the published Tasmanian devil refer-
ence genome (Murchison 2012), specifying the --dta flag
to produce alignments suitable for transcript assembly.
Aligned reads were checked for DNA contamination,
firstly by visualization using the Broad Institute’s (Cam-
bridge, MA, USA) Integrative Genomics Viewer, and
then by using the DepthOfCoverage function from the
Genome Analysis Toolkit (GATK) v 4.1.8.1 to quantify
the proportions of different genomic regions (e.g., ex-
onic, intergenic) that were covered by at least one se-
quencing read (see Additional file 12, Table S12 for
results). We used samtools to sort the alignments prior
to assembling the transcripts using Stringtie v 2.1.0 [93]
and the Ensembl reference annotation v 7.0.97 [94].
Then, using Stringtie, we merged all transcripts into a
non-redundant assembly and used gffcompare v 0.11.7
[95] to annotate the merged assembly and examine how
the assembled transcripts compare with the reference
annotation. We then repeated the transcript assembly
for each sample, using the merged annotation as the ref-
erence, and generated tables of transcript abundances in-
cluding only transcripts that appeared in the merged
reference annotation.

Differential expression analysis
Prior to differential expression analysis, tables of tran-
script abundances were converted into read tables of
gene-level abundances using the R package tximport
[96]. All differential expression analyses and preparatory

steps were conducted in R using EdgeR [97] unless
otherwise indicated, with the entire pipeline run three
times as distinct analysis sets: 1) tumor-lip contrasts to
investigate differential expression in tumors compared
to host lip tissues; 2) lip-only contrasts to investigate
variation in gene expression among hosts (e.g., with re-
spect to sex and/or DFTD infection status); 3) tumor-
only contrasts to investigate variation in expression
among tumors (e.g., with respect to host sex or locality).
For the tumor-lip contrasts, all lip and tumor transcrip-
tomes were analyzed together, while the lip-only con-
trasts only included lip transcriptomes and the tumor-
only contrasts only included tumor transcriptomes.
To ensure our analysis contained only genes that were

expressed across experimental groups, we removed
genes lacking transcript counts > 10 in at least three
samples. Read counts were then normalized among li-
braries using the calcNormFactors function. We included
the following factors in our analysis: sex (of the host
devil, in the case of tumors), infected (i.e., with or with-
out DFTD), tissue (normal lip or DFTD tumor), popula-
tion (sampling locality; BR, TKN, or WPP), and batch
(batches 1 or 2 comprising 2016 samples, or batch 3
comprising 2018 samples). Differential expression ana-
lyses were performed using a quasilikelihood generalized
linear model framework [98], using a different model
formula depending on the tissues being analyzed. To
simplify the design for each model and more easily facili-
tate comparisons between groups of potentially interact-
ing factors, two factors of interest were combined into a
single group factor. For the lip-tumor and lip-only
models, this group factor comprised sex and infected (fe-
male-uninfected, female-infected, male-uninfected, or
male-infected). For the tumor-only model, the group fac-
tor comprised sex and population (female-BR, female-
TKN, female-WPP, male-BR, male-TKN, or male-WPP).
For all models, to account for any effect that differences
in lab protocols (see above) may have had on gene ex-
pression measurements, we included batch as a factor.
Accordingly, we specified the formula for the host lip
tissue vs DFTD tumor tissue model as:

0 � tissueþ groupþ populationþ batch

The model formula for comparisons among lip tissues
only was:

0 � groupþ populationþ batch

The model formula for comparisons among tumor tis-
sues only was:

0 � groupþ batch

For each model, we calculated log gene counts per
million (logCPM) and constructed multidimensional
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scaling (MDS) plots using the R package limma [99] to
identify clustering of samples according to our factors of
interest. We observed MDS clustering of samples with
respect to sequencing batch; this effect was subsequently
corrected in all data visualization using the limma func-
tion removeBatchEffect to remove any variation in
logCPM associated with the batch factor (Add-
itional file 4: Fig. S4). MDS plots represented the top
500 differentially expressed genes defined as those with
the largest standard deviations between all samples.
To identify differentially expressed genes between lip

and tumor tissues, we performed a single contrast com-
paring all lip samples with all tumor samples, together
with three separate contrasts comparing lip samples with
tumor samples within in each locality. For the tissue-
specific models, we performed a number of different
contrasts: among lip samples, we performed 10 contrasts
comprising various combinations of sex and infection
status (Additional file 2: Table S2); among tumors, we
performed seven contrasts comprising various combina-
tions of host sex and sampling locality (Additional file 2:
Table S2). Each contrast produced a table of results for
all expressed genes quantifying the magnitude of differ-
ential expression between groups (log2 fold change;
log2FC) and the significance of this difference given as
nominal and false-discovery-rate-adjusted [FDR; 100] P
values. We defined significantly differentially expressed
genes at a false discovery rate threshold of 0.05, with no
cutoff for log2FC. To verify effective control of batch ef-
fects, all differential expression results were compared
with repeated analysis of batch 3 samples only (Add-
itional file 11: File S11).

Enrichment analysis
For contrasts with large numbers of differentially
expressed genes, we performed a PANTHER Overrepre-
sentation Test to test for biological processes (as defined
by the PANTHER GO-Slim Biological Process annota-
tion dataset) that are overrepresented among sets of dif-
ferentially expressed genes. This comprises a Fisher’s
Exact Test for GO-terms that are over- or underrepre-
sented relative to a ‘background’ reference list, which we
specified as the full list of expressed genes from which
the differentially expressed genes were detected. Signifi-
cantly enriched GO-terms were identified at an FDR
threshold of 0.05. We performed overrepresentation
tests on sets of significantly over- and under-expressed
genes separately as this has been shown to be more
powerful for detecting differentially expressed pathways
than analyzing all differentially expressed genes together
[101]. To reduce redundancy among significantly
enriched GO-terms and thus reduce the size and in-
crease interpretability of our GO-term lists, we used
REVIGO [102] to cluster highly related GO-terms

together and identify single representative GO-terms for
each cluster.
To test for general patterns of up- or downregulation

of biological pathways, we performed Gene Set Enrich-
ment Analyses [GSEA; 103, 104] using pre-ranked lists
of genes from differential expression analyses. Each
expressed gene, irrespective of whether it was signifi-
cantly differentially expressed, was ranked using a metric
that measures the magnitude of the gene’s log2FC as
well as the nominal statistical significance of that
change, calculated as log2FC ∗ − log 10(P). This pro-
duced a list whereby, for a given comparison between
conditions, significantly upregulated genes had higher
positive scores, significantly downregulated genes had
lower negative scores, and genes that were neither up-
nor downregulated had scores close to zero. Given such
a ranked list, GSEA tests for known sets of related genes
that have disproportionately higher or lower rankings,
calculating an enrichment score (ES) and FDR-adjusted
p-value for each gene set tested. We performed the ana-
lysis using GSEA v4.0.3 [103, 104], testing gene sets
from the most recent Reactome pathways database
[105]. All GSEA contrasts were performed across 1000
permutations and restricted to gene sets containing be-
tween 15 and 5000 genes, with the ‘meandiv’
normalization mode selected. For contrasts with rela-
tively few (< 50) differentially expressed genes, we used
the weighted enrichment statistic, which places greater
emphasis on genes at the top and bottom of the ranked
list. For contrasts with larger numbers of differentially
expressed genes (thus having important genes ranked
further down the list), we used the classic enrichment
statistic, which weights rank positions equally.
To visualize and aid interpretation of our GSEA re-

sults, we produced similarity networks that cluster
enriched gene sets according to numbers of overlapping
genes and annotated each cluster of gene sets by com-
mon functions using the EnrichmentMap [106] and
AutoAnnotate [107] add-ons to Cytoscape v 3.8.0 [108].
This accounts for redundancy between gene sets, re-
duces the overall complexity of the GSEA results, and
facilitates identification of both major functional themes
as well as unique or distinct pathways from among po-
tentially hundreds of significant yet largely redundant
gene sets. Gene sets were filtered to exclude those above
an FDR q-value cutoff of 0.01. Gene set clusters were de-
fined using the Markov Cluster (MCL) algorithm with
default settings. For each cluster, the top three most fre-
quently occurring words among gene set names – nor-
malized according to their frequency across all gene sets
– were used to concisely annotate each cluster for gen-
eralized functions. We made minor manual edits to an-
notations where automatic annotation produced
misleading results.
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Genotype analysis
We performed genotyping of mRNA sequences accord-
ing to the Broad Institute’s Best Practices Workflow for
RNAseq short variant discovery. Detailed descriptions of
the genotyping and variant filtration workflow are pro-
vided in Additional file 3: Text S3. To characterize
population genetic structure in both devils and DFTD
tumors that may be associated with among-population
variation in tumor gene expression, we performed separ-
ate discriminant analyses of principal components
(DAPC), implemented in the R package adegenet, using
the respective SNP datasets. We defined groups accord-
ing to sample locality to characterize the extent of gen-
etic differentiation among them; however, we also used
the find.clusters function to infer genetic clusters purely
from SNP variation, without a priori designation.
To identify specific SNPs and indels potentially associ-

ated with differentially expressed genes, we used SnpEff
[47] to annotate all genotyped tumor variants according
to their positions with respect to known genes (using
the Ensembl v 7.0.86 annotation for S. harrisii) and
quantifying each variant’s predicted impact on gene
function. For example, a variant leading to loss or gain
of a stop codon would have a predicted high impact, a
nonsynonymous variant would be predicted to have a
moderate impact, and a synonymous variant would be
predicted to have a low impact [47]. We evaluated these
annotations against our lists of differentially expressed
genes to identify variants potentially contributing to or
associated with up- or downregulation of genes. We
tested all variants predicted to affect any gene that was
differentially expressed between any pair of localities for
their effects on expression of their respective genes
(measured as counts per million and normalized as
above) using a Kruskal-Wallis test. P-values were ad-
justed for multiple comparisons using the Benjamini-
Hochberg approach, with an FDR threshold of 0.05.
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