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Systems biology is accumulating a wealth of understanding about the structure of genetic regulatory networks, leading to a more

complete picture of the complex genotype–phenotype relationship. However, models of multivariate phenotypic evolution based

on quantitative genetics have largely not incorporated a network-based view of genetic variation. Here we model a set of two-

node, two-phenotype genetic network motifs, covering a full range of regulatory interactions. We find that network interactions

result in different patterns of mutational (co)variance at the phenotypic level (the M-matrix), not only across network motifs

but also across phenotypic space within single motifs. This effect is due almost entirely to mutational input of additive genetic

(co)variance. Variation in M has the effect of stretching and bending phenotypic space with respect to evolvability, analogous

to the curvature of space–time under general relativity, and similar mathematical tools may apply in each case. We explored

the consequences of curvature in mutational variation by simulating adaptation under divergent selection with gene flow. Both

standing genetic variation (the G-matrix) and rate of adaptation are constrained by M, so that G and adaptive trajectories are

curved across phenotypic space. Under weak selection the phenotypic mean at migration-selection balance also depends on M.
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Recent years have seen an explosion in the functional under-

standing of genetic interactions, including mapping of large ge-

netic regulatory and metabolic networks (Dieckmann and Doe-

beli 1999; Stuart et al. 2003; Huang et al. 2007; Dixon et al.

2009; Costanzo et al. 2010; Zhang et al. 2011). These data

have led toward a more comprehensive understanding of com-

plex phenotypes, and emphasize the complexity and nonlinearity

of the genotype–phenotype relationship (Benfey and Mitchell-

Olds 2008; Mitteroecker 2009; Tøndel et al. 2011; Travisano and

Shaw 2013). In particular, pleiotropy and functional epistasis are

ubiquitous in genetic regulatory networks (Tyler et al. 2009), and

this has important consequences for the evolution of complex

phenotypes.

However, traditional quantitative genetic models of multi-

variate adaptation typically assume phenotypic traits to be affected

by a large number of loci with largely independent, additive ef-

fects (Lande and Arnold 1983; Turelli 1985; Arnold et al. 2001,

2008; Roff 2006). Although pleiotropy and statistical epistasis

are sometimes included in these models (e.g., Jones et al. 2003,

2007; Alvarez-Castro et al. 2009), the effects of specific genetic

regulatory network architectures on quantitative genetic predic-

tions of adaptation are not well understood. Incorporation of a

network-level functional view of genetic interactions into models

of multivariate phenotypic evolution represents a new synthesis

in biology, enabled by a new wealth of empirical data (Zhu et al.

2009; O’Malley 2012).
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An initial step toward this synthesis is to explore the con-

sequences of simple network motifs on patterns of dominance,

pleiotropy, and epistasis, considering the equilibrium expression

level of a gene in the network as the phenotype (Omholt et al. 2000;

Gjuvsland et al. 2007; Aylor and Zeng 2008). Here we apply a

similar modeling approach to multivariate phenotypic space. In

multivariate evolution, mutational and genetic correlation among

traits can either constrain or facilitate adaptation, depending on the

relationship between the direction of selection and genetic cor-

relation (Schluter 1996; Hansen and Houle 2008; Agrawal and

Stinchcombe 2009; Walsh and Blows 2009). Such correlations

are expected to result from factors including the pleiotropy and

epistasis inherent in genetic networks. Moreover, nonlinearity in

the genotype–phenotype map resulting from genetic network ar-

chitecture means that the patterns of mutational correlation may

change across phenotypic space, even when the mutational pro-

cess at the genotypic level remains constant (Mitteroecker 2009).

This variation across phenotypic space could substantially affect

both adaptive and neutral evolutionary trajectories (Steppan et al.

2002; Arnold et al. 2008). However, the ways in which genetic

regulatory network architecture may induce this variation have

not been well quantified.

Here we consider a set of two-node network motif models,

covering all basic types of regulatory interactions, in which the

phenotypes of interest are the expression levels of the two loci.

The mathematical form we use to model regulatory interactions is

general to Michaelis–Menten kinetics as well as other modes of

gene regulation (Omholt et al. 2000; Gjuvsland et al. 2007), and

we explore the complete set of possible two-node interactions in

this form. The two nodes in the network, although described below

as single loci, may also be interpreted as well-connected modules

in a larger network that interact in relatively simple ways. We

model the interactions in these networks with differential equa-

tions describing dynamic gene expression, where the phenotypes

are equilibrium gene expression levels. We assess whether simple

network motifs lead to nonlinearity in the genotype–phenotype

map that is sufficient to create not only mutational and genetic

correlation, but also variation in patterns of that correlation across

phenotypic space. Using simulations of adaptive divergence with

gene flow between two populations, we test whether the resulting

curvature in phenotypic space constrains rates and trajectories of

adaptation.

Methods
MODELING GENE REGULATORY NETWORKS

We modeled a set of six two-node gene regulatory networks us-

ing systems of ordinary differential equations (ODEs) describing

gene expression levels. These two-locus ODEs are analogous to

Gjuvsland et al.’s (2007) three-locus models, and they describe

the rate of change of the concentrations of gene products x1 and x2

given the genotypic values α1 and α2 and the parameters θ and γ.

These ODE systems reach stable equilibrium levels of expression,

and we use the equilibrium expression levels of gene products x1

and x2 as the two phenotypic traits for any instance of a network

motif. We do not explicitly model transcription and translation or

specify what type of gene product is involved, in order to apply

the models to any type of regulatory signal that could lead to

interactions between loci or between tightly connected modules

in a genetic network. Our model uses diploid individuals but does

not contain any dominance, so we define the “genotypic value”

αi at each locus as the sum of allelic effects for the two alleles.

Positive or negative gene regulation was modeled as a sigmoid

function (Fig. 1). For example, concentration of gene product x1

has a positive effect on dynamic expression levels of locus 2 in the

second equation of Figure 1A, so locus 1 positively regulates lo-

cus 2. The parameter θ represents the amount of regulator needed

to get half of the maximum expression rate and γ is the decay

rate of expressed gene product (Gjuvsland et al. 2007). For sim-

plicity in this study, these two parameters were fixed (θ = 300,

γ = 1).

Setting the ODEs for each motif to zero and solving for x1

and x2 yields unique solutions for the gene expression levels at

equilibrium as a function of the genotypic values, θ, and γ (see

Supporting Information). We assume no environmental variation;

therefore, for a given genotype in a particular network motif we

can calculate both equilibrium expression levels—i.e., the pheno-

typic trait values—directly. We assessed stability of equilibrium

expression levels by calculating the Jacobian matrix lineariza-

tion of the ODEs at equilibrium points. Equilibrium trait values

are stable for all motifs when allelic effects and trait values are

positive, conditions that are assumed throughout this study (see

Supporting Information). For each regulatory motif we also solved

for genotypic value (sum of the allelic values at each locus) as

a function of equilibrium expression levels. These solutions are

unique, so that the genotype–phenotype map is 1:1 at the level

of genotypic values for all motifs across positive gene expression

levels.

ESTIMATING M, G, AND EPISTATIC (CO)VARIANCE

We estimated the matrix of mutational (co)variance M across phe-

notypic space for each motif using a linear approximation to the

genotype–phenotype map as follows. For each motif we calcu-

lated the 2 × 2 Jacobian matrix Ji of the genotype–phenotype

map. Then for motif i, Mi = Ji�Ji
T, where � is the matrix

of mutational variance introduced per generation at the level of

genotypic values. We assumed � to have zero covariance (i.e.,

no correlation in mutation between loci) and equal variance terms

2σ, where σ2 = 17.3 is the per-allele mutational variance in allelic

value following a continuum of alleles model (Kimura 1965). This

EVOLUTION APRIL 2014 9 5 1



T. D. HETHER AND P. A. HOHENLOHE

Figure 1. Gene regulatory network motifs. Below each motif are the system of ordinary differential equations governing gene expression

levels xi and a graphical depiction of the genotype–phenotype map. Parameters are genotypic value α i , the sum of allelic values at locus

i; θ, concentration of the regulator at which half of the maximum activation level is reached; and γ, gene product decay rate. All motifs

reach a single stable equilibrium gene expression level given a pair of genotypic values. Contours represent these phenotypic trait values

x1 (solid blue) and x2 (dashed red) as a function of genotypic values.

per-allele mutational variance effectively scales the total size of

M, but does not affect the covariance structure of M at all. To

validate the linear transformation approximation of M against the

M-matrix that would occur in a polymorphic population, we also

estimated M numerically by creating populations centered at nine

points in a grid across phenotypic space (at x1 = 200, 300, 400

and x2 = 200, 300, 400) for each motif. We randomly sampled

phenotypic values for 10,000 individuals from a bivariate Gaus-

sian distribution with standard deviation of 20 phenotypic units.

We mutated each allele in all 10,000 individuals by adding a ran-

dom deviate, sampled from a Gaussian distribution with variance

σ2 = 17.3, and calculated M as the (co)variance of phenotypic

deviations resulting from allelic mutation. The resulting M ma-

trices were indistinguishable from those calculated above, so the

linear approximation method was used for all calculations below.

We also estimated the G-matrix of additive (co)variance and

the epistatic (co)variance matrix for the nine populations in each

motif described above, using the animal model (Kruuk 2004;

Wilson et al. 2010). Each population was evenly split into males

and females, and 100 sires were randomly mated to 10 dams

each resulting in 1000 offspring, with independent assortment

between loci. Using the resulting pedigree information, we ob-

tained breeding values for individuals and population estimates

of the G-matrix by fitting a generalized linear mixed model with

the R package MCMCglmm (Hadfield 2010; R Development

Core Team 2012). Because our model includes no dominance

(alleles are purely additive within each locus) and no random

environmental effects on phenotype, the population-level resid-

ual (co)variance matrix includes solely epistatic (co)variance. For

the random effects prior, we set the variance component equal to

9 5 2 EVOLUTION APRIL 2014



REGULATORY NETWORKS AND ADAPTATION

the phenotypic (co)variance and set the parameter “nu” to 2. To

the speed up convergence and chain mixing properties, we used

parameter expanded methods (Liu et al. 1998) with prior means

for the working parameter “alpha” set to (0,0) and variances set

to 1000 with zero covariance. For the residual effects prior, we

set the variance component of the inverse Wishart distribution to

1000 along the diagonal with zero covariance and nu to 0.002.

We ran the Markov Chain for 12,000 generations following a

1000-generation burn-in period, sampling every 25 generations

to reduce autocorrelation.

Evolvability depends on mutational variation, so phenotypic

space can be rescaled by the mutational distance between pheno-

types. To the extent that adaptation is mutation-limited, this rescal-

ing reflects the “evolutionary distance” traveled during adaptation

to a novel phenotype. Mathematically, this distance between phe-

notypic values is the Mahalanobis distance scaled by the local

value of M, so that the inverse of M is a Riemannian metric

tensor (Jost 2011). We created visualizations of mutation-scaled

phenotypic space using an iterative algorithm for deforming a

grid of bivariate phenotypes. The algorithm first scaled the grid

by mutational variance along single phenotypic axes by multiply-

ing distances from each point to its four nearest neighbors by the

square root of the corresponding diagonal elements of M−1, esti-

mated at each grid point as described above. It then incorporated

mutational covariance by sequentially adjusting the position of

each point on the grid so that its Euclidean distance to its eight

nearest neighbors (horizontal, vertical, and diagonal) matched as

closely as possible to the Mahalonobis distance between pheno-

types, scaled by the local M-matrix. Code to perform this defor-

mation was written in R (R Development Core Team 2012) and

is available from the authors.

SIMULATING DIVERGENT SELECTION

WITH GENE FLOW

We used R to create individual-based simulations to determine

the effect of varying gene regulatory network motifs on adapta-

tion under a model of divergence with gene flow. Each simulation

replicate included two populations, each of size n = 2,000, ex-

changing migrants at rate m in an island model (Wright 1931). To

initialize each population, we used the Phenotype-to-Genotype

equations (see Supporting Information) to obtain the genotypic

values α1 and α2 that correspond to a phenotype of x1 = 300 and

x2 = 300 for each network. We then generated allelic variation

by randomly drawing allelic values for each individual using a

Gaussian distribution centered at half of the genotypic value and

with a variance of 200. We then imposed divergent selection on

the two populations by selecting toward two optimum pheno-

types. The phenotypic optima for populations 1 and 2 were set

to phenotypic points (x1 = 150, x2 = 450) and (x1 = 450, x2 =
150), respectively. Thus, divergent selection was imposed along

the axis representing negative correlation between the two traits,

and selection on the two populations was symmetrical in terms of

distance to the optimum and strength of selection.

We used a Gaussian fitness function to calculate individual

fitness, w:

W = exp−(1/2)(x−xopt)T
�−1(x−xopt), (1)

where x is a column vector containing trait values, xopt is a column

vector of phenotypic optima for each trait, and � is a symmetrical

2-by-2 matrix describing the landscape of stabilizing selection,

analogous to a (co)variance matrix. For simplicity, we assume

equal strengths of stabilizing selection for each trait (i.e., the

diagonal elements of � are ω = ω11 = ω22) and no correlational

selection (ω12 = ω21 = 0). Individuals were randomly chosen

to mate with a probability proportional to their relative fitness

(w = W
Wmax

).

Offspring randomly received one allele per locus from each

parent, with independent assortment between loci. This process

was continued, sampling with replacement from the parental gen-

eration, until the new population’s size equaled the parental size,

so that generations were nonoverlapping. During meiosis there

was a probability μ that an allele mutates. In this case, the new

allelic value was the sum of the original allelic value plus a ran-

dom value centered at zero with variance σ2 = 17.3. For these

simulations μ was set to 0.01, so total allelic variance intro-

duced by mutation per generation per allele was 0.173. Note that

this represents less total mutational variance, but identical covari-

ance structure, compared to the M-matrices calculated above. Mi-

gration between populations followed mating. Individuals (from

both populations) were chosen to migrate with probability m, then

pooled and redistributed randomly back to one of the populations.

To characterize the effects of network motif on adaptation, we sim-

ulated 10 replicates of population pairs for each motif for 1000

generations with parameter values m = 0.001 and ω = 10,000.

To explore the effects of selection strength and migration rate,

we simulated 10 replicates of population pairs for motif C across

multiple parameter values (m = 0, 0.0001, 0.001, 0.01; ω = 1000,

10,000, 50,000). We ran these simulations for 20,000 generations

to characterize equilibrium levels of adaptation. For reference, at

selection strengths of ω = 1000, 10,000, and 50,000, fitness of

individuals 10 phenotypic units away from the optimum is 90%,

99%, and 99.8% of the fitness at the optimum, respectively. Initial

selection during the simulations was strong; mean-standardized

selection gradients per trait (Hansen and Houle 2008) for the null

motif at the initial population mean would be ±25, 2.94, and 0.60,

respectively.
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QUANTIFYING GENETIC VARIATION

AND ADAPTATION

We estimated the G-matrix of additive genetic (co)variance at

generations 50, 100, 500, and 1000 for the shorter simulations,

and additionally at generation 20,000 for the longer simulations.

Before the mating phase of each of these generations, we con-

ducted a “side experiment” in which 100 sires were mated to 10

dams each to produce 1000 offspring, and we estimated G using

MCMCglmm (Hadfield 2010; R Development Core Team 2012)

as described earlier. Note that these pedigree data were produced

independent of fitness, and these offspring were not those used

for the next generation of the simulation.

We used several metrics to quantify adaptation and the struc-

ture of G during the course of divergence with gene flow. The

extent of adaptation was calculated as:

A = 1 − Dopt,t

Dopt,ini
, (2)

where Dopt,ini is the Euclidean distance between the initial starting

position (300, 300) and the phenotypic optimum, and Dopt,t is the

Euclidean distance between a given population’s mean phenotype

at time t and its phenotypic optimum. Equation (2) represents a

ratio where a value of 1 can be interpreted as a population being

well-adapted to its respective phenotypic optimum. We quanti-

fied aspects of G with four metrics (Jones et al. 2003): (i) size

�, calculated as the sum of the eigenvalues, equal to the sum of

the variance terms; (ii) eccentricity or shape ε, calculated as the

smaller eigenvalue divided by the larger eigenvalue; (iii) orienta-

tion ϕ, calculated as the angle between the leading eigenvector

gmax and the axis of x1; and (iv) effective dimensionality nD, cal-

culated as the total variance divided by the leading eigenvalue

(Kirkpatrick 2009).

Results
GENOTYPE–PHENOTYPE MAP UNDER SIMPLE

NETWORK MOTIFS

We modeled a set of six genetic regulatory network motifs (Fig. 1).

For all motifs, the genotype–phenotype map was 1:1 at the level

of genotypic values, although not allelic values (see Supporting

Information). In the absence of any interlocus interaction (null

motif; Fig. 1F), each phenotype equaled the genotypic value at the

corresponding locus. In all other cases, both pleiotropy and epis-

tasis were evident in the genotype–phenotype maps. Pleiotropy

resulted from unidirectional (motifs A and B) and bidirectional

(motifs C–E) regulation between loci, because the genotypic value

at a single locus affected the expression levels of both loci. In

contrast, the nature of epistasis in allelic effects on phenotypes

depended on the type of interaction. Negative regulation led to lin-

ear contours on the genotype–phenotype map for the expression

level of the downstream gene—but note that where the contours

are not parallel, the relationship between multivariate genotypes

and phenotypes is still nonlinear (e.g., Fig. 1B,D; see Supporting

Information). In contrast, positive regulation led to hyperbolic

curved contours in the genotype–phenotype map for the down-

stream gene (e.g., Fig. 1A). In both cases, the nonlinearity in map-

ping from genotype to phenotype for one or both traits indicates

statistical epistasis; that is, the phenotype resulting from allelic

substitutions at both loci differs from the expectation based on the

independent additive effects of the alleles considered separately

(Phillips 2008).

LANDSCAPE OF MUTATIONAL VARIATION

We assessed the landscape of mutational variation using the M-

matrix of quantitative genetics, a (co)variance matrix of the phe-

notypic variation across multiple traits produced by mutation per

generation. The motifs produced a wide range of mutational vari-

ance in each trait and, with the exception of the null motif (F),

correlation between traits (Fig. 2). Moreover, M exhibited striking

variation across phenotypic space even when network motif and

all other parameters were held constant for all but the null motif.

The overall size of M—the total amount of phenotypic variance

produced by mutation—varied across motifs as well as across

phenotypic space within motifs. The magnitude of mutational

correlation, and thus the effective dimensionality of M, varied

across phenotypic space for all but the null motif (Figs. 2, S1).

The sign of the correlation also shifted under the negative feed-

back loop motif (Fig. 2C), leading to the most extreme variation

in dimensionality (Fig. S1C).

Although the network motifs exhibit strong functional

epistatic interactions between loci and statistical epistasis in

the genotype–phenotype map, the patterns of (co)variance in M
were essentially the result of additive genetic (co)variance with

only negligible epistatic (co)variance. We estimated additive ge-

netic and epistatic (co)variance for the two traits across pheno-

typic space for each motif (Figs. S2, S3). Matrices of epistatic

(co)variance were much smaller in total magnitude than the G-

matrix of additive genetic (co)variance, and the pattern of co-

variance was similar to G. Total epistatic variance represented

a negligible contribution to total phenotypic variance, such that

narrow-sense heritability was greater than 0.99 for both traits in

all motifs, for those populations at the center of phenotypic space.

Because additive variation contributes most directly to the re-

sponse to selection, the covariance patterns in M are predicted

to have a strong effect on adaptation to the extent that evolution

is mutation limited. If this is so, we can get relative estimates of

mean evolvability (Hansen and Houle 2008) from M. This also

varied widely across phenotypic space (Fig. S4).

Because M varied across phenotypic space for all but the

null model of network motifs, rescaling by mutational distance
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Figure 2. The mutational (co)variance matrix M across phenotypic space. For each network motif (A–F, labeled as in Fig. 1), M-matrices

for nine populations are plotted as 95% confidence ellipses around mutational variation produced per generation, scaled up by a factor of

2.5 for visualization. Axes within each ellipse represent the first (thick line) and second (thin line) eigenvectors, or principal components,

of mutational variation.

induced curvature in the phenotypic landscape (Fig. 3). Note that

this rescaled, curved phenotypic landscape may be best repre-

sented as an n-dimensional manifold (for n traits) embedded in

a higher-dimensional space, but the two-dimensional projection

of this manifold is shown in Figure 3. Phenotypic space was

generally stretched for all motifs relative to the null. Phenotypic

space was also stretched, as expected, in directions of positive

correlation between traits in the case of negative gene regulation

(Fig. 3B,D) and directions of negative correlation between traits

in the case of positive regulation (Fig. 3A,E). The extent of defor-

mation varied across network motifs as well as across phenotypic

space. Deformation was particularly pronounced in regions of low

genotypic value for the upstream gene and high genotypic value

for the downstream gene in positive regulation (upper left corners

in Figs. 3A,C; upper left and lower right corners in Fig. 3E). To

the extent that evolution is mutation limited, these are predicted

to be regions of phenotypic space in which adaptation may be

particularly constrained.

ADAPTATION UNDER DIVERGENT SELECTION

To test the effect of network-induced curvature in phenotypic

space on trajectories of adaptation, we simulated pairs of popula-

tions evolving from a common ancestor toward separate pheno-

typic optima with migration between them, with replicate simula-

tions to minimize stochastic differences (Fig. 4). Network motifs

had a strong influence on both the rate and the trajectories of adap-

tation. In terms of adaptation rate, most striking is the constraint on

adaptation in the direction of negative correlation between traits

when gene regulation is positive (Fig. 4A,C,E). This corresponds

to the reduced mutational variation and stretching of evolution-

ary distance in these regions of phenotypic space illustrated in

Figures 2 and 3. Conversely, adaptation is relatively rapid under
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Figure 3. Phenotypic space rescaled by mutational (co)variance for each motif. Phenotypic values from 100 to 500 are represented

as a grid that is deformed such that distances between phenotypes, dμ, in this new depiction represent equal amounts of mutational

variation. For visual reference, the locations of the nine populations from Figure 2 are plotted as black dots in this new mutational space.

Note that this rescaling may cause the two-dimensional phenotypic space to curve outward into higher dimensions, but it is represented

here as the projection of this curved manifold onto a plane.

negative gene regulation (Fig. 4D). Network motifs also produced

curved trajectories of adaptation through phenotypic space, most

notably early in adaptation for motif A and close to the optima

for motifs B–D. Curved trajectories represent the tension between

the orientation of directional selection and the orientation of addi-

tive genetic variation, summarized by the G-matrix (Lande 1979;

Arnold et al. 2008). The effects of mutational variation on adap-

tation rates and trajectories depend on G (Fig. 4), and G in our

simulations was strongly affected by M. Adaptation was con-

strained when the major axis of M, and thus the major axis of

G, is perpendicular to the orientation of directional selection, and

adaptation was facilitated when M and G align with directional

selection.

To further explore the interactions among migration, selec-

tion, drift, M, and G, we focused on the negative feedback loop

represented in motif C, extending the simulations of divergent

selection to reach equilibrium and varying strength of selec-

tion and migration rate. Motif C showed striking differences in

the degree and direction of mutational correlation across phe-

notypic space (Fig. 2C). This is expected to lead to regions of

elevated and depressed evolvability (e.g., compare upper left and

lower right regions in Fig. 3C, respectively, and the two popula-

tions in Fig. 4C). As expected, we found that selection strength

generally increased and migration generally decreased both the

rate and equilibrium extent of adaptation (Figs. 5, 6 and Ta-

ble 1). As seen in the trajectories of adaptation across all mo-

tifs (Fig. 4), the rate of adaptation toward the selective optimum

was lower in regions of phenotypic space where mutationenlal

variance in the direction of selection was limited for the negative

feedback motif, and this effect was consistent across selection

strengths and migration rates (Figs. 5, 6, S5–S9). Thus, adapta-

tion was slower in the phenotypic region around the optimum

of population 1 as opposed to the region around the optimum of

population 2.
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Figure 4. Evolution during 1000 generations in response to divergent selection with migration across network motifs. Blue and red lines

track the phenotypic means of the two populations evolving toward selective optima at the blue and red points, respectively, averaged

across 10 independent replicates for each motif. G-matrices are drawn as 95% confidence ellipses at four time points (50, 100, 500, and

1000 generations; darker ellipses denote more recent G-matrices). Parameter values are m = 0.001, ω = 10,000, μ = 0.01, size of each

population = 2000.

Rescaling phenotypic space by mutational distance makes

this difference clear: the two populations are seen to travel roughly

the same mutational distance over the course of 1000 generations,

but the optimum of population 1 is simply farther away from the

starting point in mutational distance (Fig. 7). Accordingly, the

distance traveled in phenotypic space by population 1 was much

less than that traveled by population 2, despite the entirely sym-

metrical directional selection, migration, and genetic drift acting

on each (Table 2). However, the distance traveled by the two pop-

ulations was much more similar in mutation-scaled space. In fact,

population 1 traveled farther in this rescaled space, as a result of

a steeper selection gradient acting during the simulation because

population 1 remained farther from its respective optimum than

population 2.

With weaker selection, genetic drift had a larger effect, caus-

ing higher levels of variation across replicate simulations (Figs.

S5–S9). Over longer time scales, in the case of weak selection, an

equilibrium reflecting drift/migration/selection/mutation balance

was reached farther from the optimum for population 1 compared

to population 2, particularly at higher migration rates (Table 1).

The G-matrix is affected not only by mutation but also se-

lection and migration. For the negative feedback motif (C), the

structure of G varied widely across phenotypic space and across

simulation parameters (Table 1 and Fig. 6). In general, stronger

selection produced smaller G matrices (lower overall genetic vari-

ance; see Table 1), and higher migration rates shifted the pat-

tern of genetic correlation within populations so that the major

axis aligned with the direction of divergence between popula-

tions (Fig. 6). G also varied strongly between the two populations

within simulations, showing the effect of variation in M across

phenotypic space. Thus, the tenuous balance between selection,

migration, and mutational variance led to shifts in the sign of

genetic correlation across multiple factors: phenotypic space, mi-

gration rates, and strength of selection.
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Figure 5. Extent of adaptation through time for the negative feedback network (motif C). Rows denote different selection strengths

and columns denote either population 1 (left) or population 2 (right). Within each panel are five different migration rates between the

two populations. Plotted is the mean adaptation ratio across 10 simulated replicates for each parameter combination.

Discussion
CURVATURE OF THE LANDSCAPE OF MUTATIONAL

VARIATION

The M-matrix of mutational variance and covariance plays a cen-

tral role in quantitative genetic models of multivariate evolution.

M provides the ultimate source of additive genetic variation, sum-

marized by the G-matrix, which in turn determines the response

to selection (Lande 1979). However, while increasing attention

has focused on both empirically estimating G in natural popula-

tions and gaining a theoretical understanding of its stability and

response to evolutionary forces (Arnold et al. 2008; Björklund

et al. 2013), the M-matrix has received relatively less attention

in part because of the difficulty of directly measuring it (Houle

et al. 1996, 2010; Houle 1998). One exception is Houle and Fierst

(2013), who recently estimated M for wing trats in a set of in-

bred Drosophila lines subject to mutation accumulation. They

found significant variation in M between lines, both in total size

of M and in mutational covariance structure, although some sim-

ilarity in M was maintained across lines. Although the func-

tional genetic basis of these wing traits is unknown, differences

in mutation rates between the lines may account for some of

the differences in M, particularly overall size (Houle and Fierst

2013).

In the absence of shifts in mutational rates or process at

the molecular level, one way in which M can evolve and differ

across genotypes or populations is through shifts in the architec-

ture of genetic regulatory networks—for example, appearance or

disappearance of regulatory connections between genes (Wagner

and Altenberg 1996; Lynch 2007). An additional way is through

changes in allelic values and/or allele frequencies at loci that
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Figure 6. Adaptive divergence for the negative feedback network (motif C). Each plot shows the average of 10 replicates of two

populations diverging from the initial starting position (black dot) to either the blue or red phenotypic optima for a given combination

of strength of stabilizing selection ω and migration m. Blue and red lines track phenotypic means through the course of the 20,000-

generation simulation. G-matrices are drawn as 95% confidence ellipses at five time points (50, 100, 500, 1000, and 20,000 generations;

darker ellipses denote more recent G-matrices).

influence other loci in a regulatory network. In this case, sub-

stantial additive genetic variation can be produced by mutation

even when genes have strong interactions at the molecular level

of genes and their products, termed functional epistasis (Stadler

et al. 2000; Gibson and Dworkin 2004; Phillips 2008). Here we

explored shifts in the structure of mutational variation caused by

functional epistasis with simple but explicit network motif mod-

els, holding the network architecture of regulatory connections

constant while allowing population variation in allelic values and

frequencies. We found striking variation in M at multiple levels,

which influenced adaptation under divergent selection in simu-

lation. Our models lead to several conclusions about the effect

of genetic regulatory network motifs on mutational and genetic

variation and on trajectories of adaptation.

First, we found that positive gene regulation produces more

complex patterns of statistical epistasis (Phillips 2008) than nega-

tive regulation, illustrated by the hyperbolic versus linear contours

on the genotype–phenotype map (Fig. 1). This is consistent with

the results of Gjuvsland et al. (2007), who found that positive

regulation produces greater and/or more complex patterns of sta-

tistical epistasis than negative regulation in a three-locus, one-trait

network model. This is also consistent with previous work show-

ing higher mutational robustness resulting from negative feedback

(Acar et al. 2010; Paulsen et al. 2011; Denby et al. 2012).

Second, despite the functional epistasis modeled in the net-

work motifs and the statistical epistasis evident in the genotype–

phenotype map, epistatic (co)variance at the population level was

negligible. Narrow-sense heritability was greater than 0.99 for

both traits in all motifs. This is in contrast to the results of

Gjuvsland et al. (2007), who found moderate levels of epistatic

variance across some parameter combinations in their network

model. Why the discrepancy between statistical epistasis in the

genotype–phenotype map and the lack of epistatic (co)variance

at the population level? It appears that the genotype–phenotype
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Table 1. Adaptation and G-matrix summary statistics for motif C at migration-selection balance (20,000 generations; see Fig. 5). For

each combination of migration m and selection strength ω, means and standard errors (in parentheses) are provided for population 1

(first row) and population 2 (second row) averaged over five simulated replicates. A, the extent of adaptation (see eq. 2); Gi j , the ith by

jth component of G; nD, dimensionality of G; φ, the angle of the leading eigenvector of G relative to trait axis x1; �, the sum of the two

eigenvalues of G; and ε, a measure of the eccentricity of G (see Methods).

m ω A G11 G12 G22 nD φ � ε

0 103 0.997 (4e−04) 0.9 (0.1) 2.5 (0.2) 8.3 (0.4) 1.01 (0.002) 72.9 (0.5) 9.2 (0.5) 0.01 (0.002)
0.997 (4e−04) 11.2 (0.4) −3.9 (0.2) 3.4 (0.2) 1.14 (0.004) 157.7 (1.2) 14.6 (0.5) 0.14 (0.004)

10−4 103 0.997 (5e−04) 1.0 (0.1) 2.7 (0.1) 8.9 (0.3) 1.01 (0.002) 73.0 (0.4) 9.8 (0.4) 0.01 (0.002)
0.996 (5e−04) 11.7 (0.5) −3.9 (0.2) 3.6 (0.2) 1.15 (0.005) 158.2 (0.8) 15.3 (0.6) 0.15 (0.005)

10−3 103 0.997 (5e−04) 16.3 (6.5) −13.2 (6.7) 24.7 (6.7) 1.03 (0.009) 92.1 (7.5) 41.0 (13.2) 0.03 (0.009)
0.997 (5e−04) 45.1 (12.4) −37.6 (12.3) 37.4 (12.3) 1.09 (0.016) 148.4 (2.9) 82.5 (24.7) 0.09 (0.016)

10−2 103 0.990 (8e−04) 214.4 (22.4) −214.2 (22.1) 225.0 (22.7) 1.01 (0.002) 134.2 (0.1) 439.4 (45.1) 0.01 (0.002)
0.989 (8e−04) 256.0 (16.0) −245.9 (15.7) 242.2 (15.4) 1.01 (0.002) 135.8 (0.1) 498.2 (31.4) 0.01 (0.002)

10−1 103 0.901 (0.0022) 2291.4 (57.7) −2301.0 (58.3) 2320.9 (58.7) 1.00 (0.001) 134.8 (0.0) 4612.3 (116.2) 0.00 (0.001)
0.901 (0.0021) 2469.6 (71.3) −2424.1 (67.9) 2410.7 (68.0) 1.00 (0.002) 135.3 (0.1) 4880.3 (139.0) 0.00 (0.002)

0 104 0.992 (9e−04) 5.0 (0.4) 10.7 (0.8) 35.1 (1.9) 1.04 (0.004) 72.3 (0.9) 40.1 (2.2) 0.04 (0.004)
0.990 (0.0016) 46.1 (2.6) −14.3 (1.0) 16.0 (1.0) 1.19 (0.005) 158 (1.5) 62.1 (3.3) 0.19 (0.005)

10−4 104 0.989 (0.0016) 4.6 (0.4) 10.0 (0.9) 31.7 (2.2) 1.04 (0.004) 72.1 (0.9) 36.3 (2.6) 0.04 (0.004)
0.988 (0.0015) 47.4 (2.3) −17.0 (1.5) 18.1 (1.5) 1.18 (0.004) 155.9 (1.3) 65.5 (3.6) 0.18 (0.004)

10−3 104 0.990 (0.0012) 20.0 (6.5) −5.8 (6.9) 49.0 (6.6) 1.1 (0.028) 89.1 (6.4) 68.9 (13.0) 0.10 (0.028)
0.987 (0.0020) 83.2 (13.5) −50.9 (12.7) 51.1 (12.5) 1.13 (0.015) 150.4 (2.9) 134.3 (25.9) 0.13 (0.015)

10−2 104 0.988 (0.0015) 217.4 (22.6) −210.3 (22.8) 252.1 (23.2) 1.06 (0.006) 132.3 (0.3) 469.5 (45.7) 0.06 (0.006)
0.984 (0.0018) 295.1 (16.6) −260.9 (16.1) 257.9 (15.5) 1.03 (0.003) 137.1 (0.1) 552.9 (32) 0.03 (0.003)

10−1 104 0.900 (0.0033) 2302.5 (58.1) −2298.4 (60.7) 2360.1 (62.1) 1.01 (0.001) 134.6 (0.1) 4662.7 (119.6) 0.01 (0.001)
0.897 (0.0023) 2471.5 (67.8) −2430.3 (65.2) 2424.1 (69.5) 1.00 (0.002) 135.3 (0.1) 4895.7 (137) 0.00 (0.002)

0 5×104 0.978 (0.0037) 13.7 (1.4) 26.2 (2.8) 80.2 (7.2) 1.05 (0.005) 71.1 (1.0) 93.9 (8.4) 0.05 (0.005)
0.977 (0.0023) 108.6 (8.3) −31.9 (4.2) 36.9 (4.2) 1.19 (0.005) 159.9 (1.9) 145.5 (11.7) 0.19 (0.005)

10−4 5×104 0.978 (0.0024) 11.7 (1.1) 22.3 (2.4) 73.5 (5.1) 1.05 (0.007) 72.2 (1.3) 85.2 (5.9) 0.05 (0.007)
0.974 (0.0035) 116.9 (6.5) −40.8 (2.5) 45.2 (2.4) 1.19 (0.009) 155.6 (1.6) 162.1 (7.9) 0.19 (0.009)

10−3 5×104 0.977 (0.0027) 29.9 (6.2) 7.7 (8.1) 104.6 (8) 1.17 (0.037) 85.2 (4.2) 134.5 (13.5) 0.17 (0.037)
0.977 (0.0035) 155.4 (13.6) −79.6 (13.8) 87.5 (13.6) 1.16 (0.013) 150.4 (2.7) 242.9 (26.5) 0.16 (0.013)

10−2 5×104 0.976 (0.0035) 274.9 (22.0) −194.5 (28.7) 526.1 (30.6) 1.27 (0.025) 116.2 (2.2) 801.0 (49.4) 0.27 (0.025)
0.970 (0.0027) 474.2 (19.4) −353.8 (20) 385.2 (21.6) 1.09 (0.01) 138.9 (0.7) 859.4 (38.2) 0.09 (0.010)

10−1 5×104 0.829 (0.0059) 2567.8 (57.1) −2264.7 (51.9) 4815.8 (93.0) 1.19 (0.006) 121.8 (0.6) 7383.6 (130.7) 0.19 (0.006)
0.853 (0.0050) 3563.5 (81.6) −3183 (76.2) 3766.6 (109.2) 1.07 (0.004) 134.1 (0.3) 7330.1 (174.9) 0.07 (0.004)

map for these models, while curved, is smooth enough that within

the phenotypic range of a population it is close to linear. Thus,

genetic variation within a population is nearly all additive. At

this scale, pleiotropy maintains the key role in producing some-

times strong genetic covariance. As populations evolve across

phenotypic space in response to directional selection, statistical

epistasis then results in shifts in the covariance structure of ad-

ditive variation, but not a substantial contribution of epistatic

(co)variance.

Third, we found that simple network motifs produce striking

variation in patterns of mutational variation, even when the muta-

tional process is held constant at the allelic level. The M-matrix

exhibits strong correlation as a result of network interactions,

as expected. Moreover, the total amount of mutational variation

and the sign and degree of mutational correlation depend also

on the phenotypic mean, leading to variation in M across phe-

notypic space for a given network. To the extent that evolution

depends on genetic variation provided by mutation, variation in

patterns of mutational (co)variance effectively bends and stretches

phenotypic space. The effect is analogous to the bending of space–

time by gravitation under general relativity, so that the inverse of

M acts as a Riemannian metric tensor that can be used to inte-

grate mutational distance along evolutionary trajectories (Fig. 7

and Table 2), analogous to inertial body trajectories in gravita-

tional fields (Jost 2011). Compared to traditional metrics based

on phenotypic units, this type of analysis provides an alternative

way of quantifying the pace of adaptation. Rescaling of pheno-

typic space by mutational distance is straightforward when the

genotype–phenotype map is 1:1, as it is for the simple network

motifs examined here.

All network interactions that we examined stretched phe-

notypic distance overall relative to the null model of no inter-

action. Phenotypic space was especially stretched in directions

of low mutational variance (i.e., axes of M with small eigenval-

ues). These axes of low mutational variance correspond to direc-

tions in which phenotypic change is relatively small given some

amount of mutational input, which are axes of mutational robust-

ness. Thus, network motifs differ from each other in mutational

robustness, but motifs also induce differences in mutational ro-

bustness both across phenotypic space and along different axes of
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Figure 7. Single simulation run for motif C, plotted in the rescaled

space shown in Figure 3. Parameter values for this run are as in

Figure 4.

phenotypic change from a single initial phenotype. Thus, the con-

cept of mutational robustness, like genetic variation (Walsh and

Blows 2009), requires a multivariate view to provide explanatory

power for phenotypic evolution.

Fourth, in our model the availability of mutational varia-

tion in the direction of selection constrains the speed of adapta-

tion toward a selective optimum, curves the trajectory of adapta-

tion toward the optimum, and shifts the position of the population

mean under migration-selection balance. The effect of genetic

(co)variance, and by extension mutational (co)variance, on these

aspects of adaptation has been previously established (Jones et al.

2003, 2007, 2012). What is new in the current results is the vari-

ation in this effect of M on adaptation across phenotypic space.

Although the process of adapting toward a selective optimum

Table 2. Alternative distance metrics for quantifying the amount

of evolutionary change over the two 1000-generation evolution-

ary trajectories shown in Figure 7. Rescaled space uses the M-

matrix as a metric tensor, normalizing phenotypic change by the

amount of mutational variance along a trajectory. Populations 1

and 2 are those whose phenotypic optimum is at point (150, 450)

and (450, 150) in phenotypic space, respectively.

Population 1 Population 2

Euclidean distance traveled
in phenotypic space

132.7 204.5

Total length of trajectory in
phenotypic space

150.5 221.1

Euclidean distance traveled
in rescaled space

64.8 57.9

Total length of trajectory in
rescaled space

78.6 71.4

can shift the pattern of G given constant M (Jones et al. 2004),

our network model shows that the process of evolving through

phenotypic space can also shift G because the population experi-

ences different M-matrices. In addition, curvature in trajectories

of adaptation caused by mis-alignment of G and directional se-

lection is the result of the orientation of M across phenotypic

space.

Fifth, some theoretical work has predicted that the major axis

of the G-matrix in populations experiencing gene flow should

align with direction of divergence between them, but this align-

ment depends on a balance with selection and migration rate

(Guillaume and Whitlock 2007). Our results are consistent with

this prediction, with the addition of network-induced changes in

M across phenotypic space shifting the resulting orientation of G
as well. It is worth noting that under weak selection, population

1 shows slightly higher rates of adaptation at intermediate mi-

gration rates, compared to either higher or lower migration rates.

This may be an instance of adaptive introgression; that is a low

level of migration supplying genetic variation along the axis of

divergence between populations, which facilitates the response

to selection (Guillaume and Whitlock 2007; Arnold and Martin

2009; Abbott et al. 2013). Accordingly, the dimensionality of G
is highest at intermediate migration rates in this case (Table 1).

More generally, attention has focused on the question of the sta-

bility of G over time and among related taxa. Empirically, G is

observed to change over short time scales (Björklund et al. 2013),

but also retain some aspects of its structure over longer time scales

and among populations (Arnold et al. 2008). Drift, selection, and

migration are factors that can destabilize G, and now we can add

network-induced shifts in M across phenotypic space to this list.

EXTENSION OF SIMPLE NETWORK MOTIF MODELS

The models above are most simply described in terms of two

loci that regulate each others’ expression level under Michaelis-

Menten-like kinetics. However, these network motifs are general

enough to apply to pairs of loci with multiple types of gene reg-

ulation (reviewed by Gjuvsland et al. 2007), and also to two

well-defined, interacting modules in a larger regulatory network.

As larger regulatory networks are being empirically mapped, it

is possible to abstract features of these networks corresponding

to such higher-level motif architecture, and to map these aspects

of network architecture to phenotype (Tøndel et al. 2011). This

extraction of larger-scale network motifs may suggest general

features of mutational and genetic (co)variance that emerge from

genetic regulatory networks and that could impact adaptation. It

remains to be seen to what extent more complex networks can

be approximated by much simpler network models in terms of

their influence on mutation and genetic variation, or what de-

gree of network modularity is required for this approximation.

The general modeling approach taken here could also be directly
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extended to larger motifs, using more numerical methods to cat-

alog the effects of network architecture on mutational variation

and evolutionary constraint.

Traditional quantitative genetics theory deals with epistasis

as a source of genetic variation, which is more limited than addi-

tive genetic variance in its ability to contribute to adaptive varia-

tion (Lande 1979; Lynch and Walsh 1998). However, combining

epistatic interactions into a single term obscures the wide range

of functionally different forms of epistasis. As we found here,

detecting little or no epistatic variance using variance decompo-

sition methods may mask relatively strong functional epistatic

interactions at the level of gene regulation (Stadler et al. 2000;

Phillips 2008). Despite the lack of epistatic (co)variance within

populations, we showed that functional epistasis can still have

an impact on adaptation rates and trajectories. Integrating a reg-

ulatory network view into the study of epistatic variance would

help to link quantitative genetic theory and models of phenotypic

evolution to the emerging wealth of data from systems biology

(Gjuvsland et al. 2007).

As described earlier, the genotype–phenotype map in this

simple model is 1:1. The actual genotype–phenotype map for

nearly any quantitative trait is certainly more complex, including

dynamic developmental pathways and interactions with environ-

mental inputs, to the extent that some suggest it may not be helpful

to consider it as a “map” at all (Pigliucci 2010; Travisano and Shaw

2013). Even simple network architecture can limit the ability of

quantitative trait locus mapping, based on standard assumptions

about the distribution of genetic variation, to detect loci underly-

ing a trait (Gjuvsland et al. 2007). One approach around this issue

is to include network parameters directly in the mapping analysis

(Wang et al. 2012). However, it may be that in the case of large

genetic regulatory networks with allelic variation at multiple loci,

epistatic interactions average out and locus effects are largely ad-

ditive, so that new approaches to association mapping can indeed

account for much of the observed heritability (Allen et al. 2010;

Yang et al. 2010).

Given its complexity, one may ask whether the concept of

a genotype–phenotype map is obsolete. We argue that it is not.

Factors like network motif architecture, developmental processes,

and genotype-by-environment interaction certainly add layers of

non-linear complexity in the genotype–phenotype relationship.

But in both functional studies and predictive models of evolution,

approaches can be used to partition these layers. At the phenotypic

end, genotype-by-environment interaction can be partitioned out

by considering the “phenotype” to be a functional response to

environmental inputs—a set of function-valued traits (Kingsolver

et al. 2001). Network-based models can also explicitly incorporate

phenotypic plasticity into the genotype–phenotype map (Draghi

and Whitlock 2012). At the genotypic end, it may be possible to

explain a large portion of the effect of network architecture on rele-

vant evolutionary features, such as M and G, simply by summariz-

ing complex networks as their canonical motif structure (Tøndel

et al. 2011). Explicit models of developmental pathways can also

help to focus on particular layers of the genotype–phenotype map

(Mitteroecker 2009; Félix 2012). These relationships are clearly

difficult to unravel, but rapid advances in technology allowing

high-throughput empirical measurement at multiple levels (e.g.,

genomic sequence, genetic and metabolic network architecture),

as well as the promise of high-throughput methods at the organ-

ismal phenotype level (Houle et al. 2010), may facilitate progress

in revealing these connections between genotype, phenotype, and

evolutionary trajectories.

Conclusions
Our models indicate that the architecture of simple network motifs

can potentially have a strong impact on adaptation. Network in-

teractions lead to mutational covariance among traits, and this co-

variance varies across phenotypic space. Moreover, despite strong

patterns of both functional and statistical epistasis, the mutational

covariance takes the form of additive genetic variation, so it has a

direct impact on the response to selection. The effects of epistasis

are observed in changing the covariance structure of mutational

and genetic variation as populations adapt toward novel pheno-

types. As a result, several evolutionary properties—additive ge-

netic (co)variance (the G-matrix), the rate of adaptation toward

a selective optimum, and the trajectory of adaptation—are all

essentially stretched and curved across phenotypic space.
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