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Abstract

We present a simple model of genetic regulatory networks in which regulatory connections among genes are mediated by
a limited number of signaling molecules. Each gene in our model produces (publishes) a single gene product, which
regulates the expression of other genes by binding to regulatory regions that correspond (subscribe) to that product. We
explore the consequences of this publish-subscribe model of regulation for the properties of single networks and for the
evolution of populations of networks. Degree distributions of randomly constructed networks, particularly multimodal in-
degree distributions, which depend on the length of the regulatory sequences and the number of possible gene products,
differed from simpler Boolean NK models. In simulated evolution of populations of networks, single mutations in regulatory
or coding regions resulted in multiple changes in regulatory connections among genes, or alternatively in neutral change
that had no effect on phenotype. This resulted in remarkable evolvability in both number and length of attractors, leading
to evolved networks far beyond the expectation of these measures based on random distributions. Surprisingly, this rapid
evolution was not accompanied by changes in degree distribution; degree distribution in the evolved networks was not
substantially different from that of randomly generated networks. The publish-subscribe model also allows exogenous gene
products to create an environment, which may be noisy or stable, in which dynamic behavior occurs. In simulations,
networks were able to evolve moderate levels of both mutational and environmental robustness.
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Introduction

Models of genetic regulatory networks hold the promise of a
deeper understanding of two fundamental processes in biology.
First, the relationship between genotype and phenotype in each
individual depends on the dynamic behavior of genes interacting
with each other and their environment. Second, natural selection
acts on the resulting phenotypes produced by this interaction, thus
the response to selection and the long-term course of evolution
depend on how variation in network properties can be altered by
mutation and recombination. Of particular interest is understand-
ing the connection between these two processes, as our
assumptions about how these networks are formed affect how
they operate at a time, and simultaneously how they can change over
time. As with all modeling efforts, constructing these models
requires a balance between simple, general, and easily interpreted
models on the one hand, and more complex, specific, and
predictive models on the other. Here we present what we call a
publish-subscribe model of gene regulation. This model adds a layer
of complexity to an existing simple model, Kauffman’s NK
networks [1,2]. Our model produces networks that operate
similarly to those in the NK model–a number of regulatory genes
affect each other, producing a series of activation states that
stabilizes to a point or cyclic attractor. What differs is the fashion
in which the regulatory connections are made, and hence how
they can evolve. The changes we introduce allow for indepen-
dently mutable regulatory and transcribed regions of a gene, and

for regulatory connections to be made via intermediary products.
This enables significantly different evolutionary dynamics (for
example, significant neutral change can take place) and allows the
network dynamics to change in different environments, as the
intermediary products can be exogenously introduced. The
‘‘environment’’ of the network may be the external environment
or neighboring cells in a multicellular organism. The focal network
may also be a module within the total genetic network of an
organism [3], in which case its environment includes other
components of that larger network. We explore some consequenc-
es of these changes for the properties of single networks and the
evolution of populations of networks.
The NK model has been used to explore the properties and

dynamic behavior of genetic networks (e.g. [2,4,5]). This model
represents a set of N genes, where the activation of these genes is
represented by a binary state that is expressed (1) or not expressed
(0). Each gene is influenced by K other genes. Whether or not a
gene is expressed at time t is decided by a Boolean operation on
the previous expression state (at time t21) of the K other genes that
influence it. In the absence of stochasticity or perturbation, the
activation of these N genes moves through a series of expression
states depending on the initial conditions, ending up in either a
stable state or periodic attractor. The entire state space can be
described, and each possible attractor enumerated, by starting the
network in each of its 2N possible states and constructing a directed
graph in which the nodes are possible states of the network and the
edges are transitions among them. These transitions depend only

PLoS ONE | www.plosone.org 1 September 2008 | Volume 3 | Issue 9 | e3245



on the connections between the genes and the specific Boolean
rules associated with each gene.
The use of discrete, Boolean rules for gene regulation appears

justified as a first approximation to data from living organisms [6–
8]. In a real network, the interactions among genes are mediated
by gene products, transcription factors, signaling pathways,
cellular machinery, and diffusion processes [9]. In the NK network
model, all of these processes are collapsed into the edges linking
one gene to another. This may be a good assumption in part
because biological networks must be somewhat environmentally
robust, i.e. buffered against perturbations and stochasticity
[10,11]. This may preclude, for example, dependence on
sensitively fine-tuned levels of gene expression. Thus simple NK
networks seem to capture many of the fundamental dynamics of
genetic networks.
However, the assumption of these simple gene-to-gene connec-

tions may affect our understanding of the two basic questions raised
above. Consider the first issue, the relationship between genotype
and phenotype. We wish to know, for example, combinations of
parameters for which networks exhibit a certain behavior (e.g. [9]).
Randomly generated NK networks can provide an estimate, but
models including other parts of the genetic regulatory process may
widen the volume of parameter space in which solutions are found
[12], or change our understanding of the effect on network
properties of processes such as gene duplication [13].
Consider also the second issue, the evolution of populations of

networks. Evolution is often envisaged by constructing a fitness
landscape, a multidimensional surface defined by fitness as a
function of genotype (or phenotype), where a single ‘‘step’’ on the
surface is equivalent to a one locus mutation of the genotype [14].
Our assessment of the ruggedness of the landscape, and therefore
the ability of populations to evolve toward global optima rather than
remain on isolated local peaks, depends on the details of the model.
In particular, what constitutes a single mutational step determines
the structure of variation available to evolution. So wemust consider
not just how these networks operate, but also how changes in the
genotype affect fitness, for this will be crucial to constructing the
statistical properties of the fitness landscape. The simplest type of
mutation in NK networks is the addition or removal of a single
connection (or ‘‘edge’’) between genes in the network (e.g. [2]).
Changes in such regulatory influence are often represented as
changes to values in a connection matrix (e.g. [9]). Of course,
simulated evolution of a population of NK networks can proceed by
multiple such changes in a single generation or by other types of
mutation, such as gene duplication or loss (e.g. [4]), and this has
been a productive avenue for research on network evolution.
Nonetheless, our view of the landscape of possible network
configurations–whether it has a single or multiple adaptive peaks
[2] or how connected is the ‘‘metagraph’’ of networks possessing
some quality like robustness [8]–depends on which networks are
connected to each other by a single mutational step.
In our model, we explicitly consider the process of gene

regulation by introducing gene products that mediate the
regulatory connections among genes. These gene products may
represent proteins, or they may be any of a variety of non-protein
regulatory molecules whose role is just beginning to be understood
[15]. Each gene is separated into a coding region, which produces
a gene product, and a regulatory region, to which gene products
may bind. The coding region of each gene acts as a binary switch,
either expressed or not in each time step. Whether a gene is
expressed–whether the coding region produces its product–
depends on the products that are bound to its regulatory region
and a set of Boolean rules that translates the binding state of the
regulatory region into the expression state of the coding region.

The regulatory connections are therefore not specified directly, but
rather are an upshot of the correspondence between coding
regions and regulatory regions.
For instance, the coding region of a particular gene might

produce some product w. Any gene that has the binding site for w
in its regulatory region will then be regulated by that gene, and
also any other gene that produces product w. This has an effect on
the range of variation in network behavior and on what constitutes
a single mutational step. We can think of coding regions that
contain a conserved DNA motif [16] as transmitting or publishing a
signal on a certain channel, and regulatory binding sites which
bind this motif as subscribing on that same channel. If a publisher
(coding region) stops transmitting on a channel, then all
subscribers (regulatory binding sites) tuned to that channel will
be affected. Likewise, if a subscriber is tuned to a channel over
which multiple publishers are sending signals, it will be affected by
each of these multiple signals. In this way, the equivalent of several
connections among genes in the network can be created or
destroyed by a single genetic mutation. What constitutes a single
step on the adaptive landscape is now significantly different than a
model that directly connects or disconnects the regulatory
interactions by adding or removing an edge or changing the
weight in a connection matrix.
It is worth noting that what we have described here as publish-

subscribe has a relevant parallel in the area of modern software
construction (indeed, that is where we derived the name) [17,18].
The move from directly connecting two interacting parts of a
software application to connecting them via this more indirect
manner has an important result. The two processes are now
decoupled, as new upstream processes may influence any processes
subscribed to the right message, and likewise new downstream
processes can react to a message by simply subscribing to it. This
particular kind of ‘‘design pattern’’ [18] ensures that, although the
system remains operationally equivalent to one with direct
connections, it is far easier to implement changes that re-use the
available structure. We might say that implementing the system in
this way makes it more ‘‘evolvable’’, in the sense that modifications
are easier to make, and have less chance of having a catastrophic
effect. In a similar manner, moving from a model where
connections are made directly, to one where the interactions
occur indirectly through such a publish-subscribe paradigm, will
have important implications in how the system may evolve.
Below we describe the model formally. We derive some basic

properties of the structure and dynamic behavior of the networks,
both by sampling randomly constructed networks and by analytic
means. We then consider how this publish-subscribe view of gene
regulatory interactions drives the potential of populations of
networks to evolve in response to different regimes of selection.

Methods

We consider a conceptually simple model of a genetic regulatory
network consisting of N genes, each of which includes a regulatory
region and a coding region (Fig. 1). The regulatory region consists
of a number of binding sites, to which specific gene products may
bind. Let us denote the regulatory region of the ith gene by ri and
its coding region by pi. We define ri and pi as sequences of length l
and 1, respectively:

ri~ xi1, . . . ,xik, . . . ,xilð Þ and pi~xilz1: ð1Þ

Each element xik (where k=1,…,(l+1)) for the sequence of a
gene is chosen from an alphabet P containing r letters with
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uniform probability 1/r. So if our alphabet P={0,1,2,3}, and
length l=3, then one possible gene would be (1,1,3,2). Here
r= (1,1,3) and p=2. A network consists of N such genes.
Interaction between two genes is mediated by gene products. If

the ith gene produces a product x that matches a binding site in the
jth gene, then the ith gene may regulate the expression of the jth
gene. We denote the possible interaction (adjacency) matrix by w,
with elements

wij~
1 pi5rj
0 otherwise

:

!
ð2Þ

The in- and out-degree of a gene are calculated by summing the
elements of the adjacency matrix, respectively:

kin~
XN

j~1

wji and kout~
XN

j~1

wij : ð3Þ

Below we show both numerical and analytic estimations of in- and
out-degree distributions [19]. Note that in estimating in- and out-
degree distributions, we do not consider the particular set of
Boolean rules governing the activity state of each gene. For
instance, a given letter x may occur in the regulatory sequence of
gene i. All genes containing x in their coding region (i.e., genes that
may produce the corresponding product) are considered to be
connected to gene i in the calculations of degree below. As with NK
networks, this is the case even if the particular Boolean rules for
gene i imply that the presence of that product has no effect on the
activity state of gene i.
In each time step a set of products R(t) is present, where R(t),P.

Each binding site in the regulatory region ri is bound if the
matching gene product is present (i.e. if xik,R(t)). Products are not
consumed when they bind; thus the product from a single gene is
sufficient for binding the regulatory regions of several genes

(effectively, we ignore quantities of gene products). We denote the
entire binding state for a gene at time t as the vector

Bi tð Þ~ xi1, . . . ,xik, . . . ,xil ,bi1 tð Þ, . . . ,bik tð Þ, . . . ,bil tð Þð Þ, ð4Þ

where bik denotes the binding state (either bound or not) of the kth
site in the binding region,

bik tð Þ~
1 xik5R tð Þ
0 otherwise

:

!
ð5Þ

Note that this state Bi(t) may be equivalent to some other
binding state Bj(t) if the jth gene has the same values in its binding
region. It may also be equivalent to Bi(t2s) if the same products
were present at time t2s. This binding state is used to determine
whether or not the gene is active, and whether the corresponding
value in the coding region will produce a product at time t+1.
The value Bi(t) locates a unique entry in a Boolean table that

returns a value representing whether the corresponding gene is
active or not. This table is common to all genes in the network
(and all networks if there is a population of networks evolving). We
will denote the table as Y. This table contains all possible
combinations of values in a binding region and their possible
bound state. Providing a global table of each particular Boolean
response to a combination of bound products provides a realistic
degree of stability to the system: two genes with identical
regulatory regions presented with the same set of intermediary
products will always do the same thing. The activity state of gene i
at the following time step is read from this table as

si tz1ð Þ~Y Bi tð Þð Þ: ð6Þ

The activity state si is binary, taking values of either 1 or 0. If
si(t+1) = 1, the product xi will be produced by gene i, so that

Figure 1. Schematic diagram of the network model. Shown are six genes, each with a regulatory region of length 2 and a coding region
(underlined). Arrows represent possible interactions, i.e. directed edges in the network. Below one gene is the Boolean rule set specific to that gene. A
‘‘2‘‘ indicates that the binding site is not bound by the corresponding product, and a ‘‘+’’ indicates that it is bound. The gene is then either expressed
(‘‘on’’) or not (‘‘off’’). In this case, if product 7 but not product 0 is present at time t, the binding state of the regulatory region of this gene
corresponds to the second row of the Boolean table. As a result, the gene is expressed and product 0 is present at time t+1. Because 0 occurs in both
the regulatory region and the coding region of this gene, it is self-regulating and will not be expressed at time t+2.
doi:10.1371/journal.pone.0003245.g001
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xi,R(t+1). If si(t+1) = 0, then xi will not be produced by gene i, but
the identical product x may be produced by another gene. The
activation state of the network at time t is given by S(t) = (s1(t),…,
sN(t)). In constructing the table Y, the value 1 is assigned to each
si with probability p, so that p gives a measure of the overall
probability of gene activity.
This model results in several possible regulatory patterns: for

instance, multiple genes with the same product have identical
regulatory effects, genes may regulate themselves (e.g. genes A and
F in Fig. 2), and products can have either inhibitory or activating
effects (e.g. the effect of product 6 on gene A versus gene B in
Fig. 2). Because there is a finite number of genes and gene activity
is binary, there is a finite number of states of the network.
Therefore, given a set of starting conditions and no stochasticity,
the network reaches a stable attractor. The attractor can be a
single state (i.e. the same set of gene products in each time step) or
a cycle (the same sets of products produced at regular intervals).
Fig. 2 illustrates a period-3 attractor over the entire network, with
some genes (D and F) in a stable state.
Because each gene’s activation si(t) is binary, the dynamics of

any particular model network is much like the NK model, in that
many binary states determine a single downstream gene’s state by
a set of Boolean operations. What differs is how the regulatory
connections are constructed, and thus how they might evolve.
How we initiate the network also differs. Rather than setting it into
a particular state, its initial conditions are defined by the
introduction of an initial set of products R(0). Note that this

means that, although there are 2N possible states of the network,
not all of these states may be strictly reachable. There may be no
combination of products that can produce a particular activation
state S. In the course of simulations, we may activate any state and
see what products it produces. But driving the dynamics of the
network purely by introducing gene products already places a
constraint on possible states that the network can enter. Finally,
mediating connections among genes by using gene products means
that a network can operate in an ‘‘environment’’ of exogenous
gene products that influence its dynamic behavior. This
environment may be stable or temporally variable, as we illustrate
below.

Results

Basic Properties of the Network
The interactions between a set of genes in the model described

above can be represented as a directed graph, where the nodes
represent genes and the edges represent connections among genes
in the publish-subscribe model. The edges are directed because of
the way we define the regulatory and coding regions of our genes.
For instance, the product xi of gene i may affect the activity state of
gene j at the next time step, but not vice versa. Thus each gene
may affect ‘‘downstream’’ genes and simultaneously be affected by
‘‘upstream’’ genes. The number of upstream and downstream
genes connected to a particular gene is the in-degree and out-
degree (respectively) of that gene. Each network can be

Figure 2. Diagram of four time steps in a 6-gene network. In the initial conditions, products 9 and 0 are present. Filled boxes represent
expressed genes, dotted arrows represent binding of products to regulatory regions, and solid arrows represent production of gene products. From
these initial conditions, this network enters a stable period-3 cyclic attractor. Boolean tables are not shown.
doi:10.1371/journal.pone.0003245.g002
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characterized by its in- and out-degree distribution–the frequency
distribution of in- and out-degree across all genes, or nodes in the
network.
Degree distributions are important indicators of the organiza-

tional principles underlying networks and have been the focus of
network theory approaches to gene regulation. The in- and out-
degree distributions of real transcriptional regulatory networks
exhibit different functional forms. In-degree typically displays an
exponential decay and is restricted to a narrow interval, while the
out-degree distribution typically has a broad tail [20–25]. It has
been shown [25] that in- and out-degree distributions together are
sufficient to reproduce most of the global topological properties of
genetic regulatory networks such as degree-degree correlation [26]
and clustering coefficient [27]. Degree distributions are also
considered to be important in determining the resistance of
networks to perturbations (robustness) and the ability of popula-
tions of networks to evolve (evolvability) [5]. With these
motivations, here we derive the directed degree distributions to
provide better insight on the properties of our model networks. We
have calculated these distributions both numerically and analyt-
ically. Numerical results were calculated from frequency distribu-
tions of a large number of networks, each generated by randomly
and independently assigning letters from the alphabet P to each
regulatory and coding site, while keeping the alphabet size,
regulatory region length, and total network size constant. Below
we present results for relatively small values of alphabet size
(r=10), regulatory region size (l=3), and total network size (N).
These parameter values, particularly alphabet size and total
network size, are likely to be much smaller than those measured in

actual genetic networks [16,21,28], but they provide a starting
point for exploring the behavior of the publish-subscribe model.
Our goal is to compare our results to the more basic NK model, so
that our conclusions can be tied to the addition of explicit gene
products. Because of the modularity found in empirical gene
networks, we can envision smaller networks as modules operating
in the context of a larger organismal network; in this context, the
‘‘environment’’ of exogenous gene products that we consider
below represents other interacting modules of the overall network.
For relatively small values of N, both in-degree and out-degree

distributions shift to the right as N increases (Fig. 3). In other
words, as N increases, the number of genes with products
corresponding to a binding site of gene i increases (in-degree),
and the number of genes with binding sites corresponding to the
product of gene i increases (out-degree). To explore the large-N
limit, Fig. 4 shows in-degree and out-degree distributions for large
networks (N=1000). In the large-N limit, such that all sequences of
length l are likely to be realized, the out-degree distribution
approaches a single binomial distribution (Fig. 4A). In contrast, the
in-degree distribution approaches a superposition of binomial
distributions, with separate peaks corresponding to the number of
different letters contained in a sequence of length l=3 randomly
sampled with replacement from the finite alphabet P (Fig. 4B).
For example, the smallest peak in Fig. 4B is the result of genes
whose three binding sites contain the same letter x, and the largest
peak is the result of genes with a different letter at each of the three
binding sites.
To calculate the out-degree distribution analytically, first we

determine the probability of finding a given letter x in a randomly

Figure 3. Degree distributions for small networks. (A) Out-degree and (B) in-degree distributions are shown for networks of size N= 5 to N=10.
Each distribution is constructed from 106 independent, randomly generated networks with parameter values r= 10 and l=3.
doi:10.1371/journal.pone.0003245.g003

Figure 4. Numerical and analytic degree distributions for large networks. (A) Out-degree and (B) in-degree distributions for networks of size
N=1000. Numerical distributions are constructed from 106 independent, randomly generated networks with parameter values r=10 and l= 3.
doi:10.1371/journal.pone.0003245.g004
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chosen sequence of length l, which is given by

p 1,lð Þ~1{ 1{
1

r

" #l

: ð7Þ

This equals the probability of the product of gene i occuring in the
regulatory sequence of gene j. Thus in the large-N limit, out-degree
kout is binomially distributed:

P koutð Þ~
N

kout

" #
p 1,lð Þ½ $kout 1{p 1,lð Þ½ $N{kout : ð8aÞ

The mean and variance of this distribution are given by

!kkout~Np 1:lð Þ and s2out~Np 1,lð Þ 1{p 1,lð Þ½ $: ð8bÞ

This analytic solution for out-degree distribution closely matches
the numerical estimate (Fig. 4A).
An analytic solution for the in-degree distribution is more

complex, being in fact a superposition of binomial distributions.
This is because a regulatory sequence of length l, chosen from a
finite alphabet of size r, may contain duplicate letters. Let I be the
number of different letters x occurring in a regulatory sequence, so
that 1#I#min(l,r), and let v(I) be the number of possible
sequences containing exactly I different letters x. The total number
of possible regulatory sequences is v~

P
l

v Ið Þ~rl . The value v(I)

can be directly calculated in terms of the parameters r and l.
Denote the multiplicity of letter xi in a sequence of length l by n(xi).
Given I and l there are two constraints on n(xi):

l~
XI

i~1

n xið Þ and 1ƒn xið Þƒ l{Iz1ð Þ: ð9Þ

For a set of I different letters with multiplicities {n(xi)}, the number
of possible sequences is a multinomial coefficient

v I n xið Þf gjð Þ~ l!

n x1ð Þ!n x2ð Þ! % % % n xlð Þ!
: ð10Þ

Combining equations (9) and (10) we get the number of regulatory
sequences containing exactly I different letters:

v Ið Þ~
r

I

 !
Xl{ I{1ð Þ

n x1ð Þ~1

Xl{n x1ð Þ{ I{1ð Þ

n x2ð Þ~1

% % %

Xl{ n x1ð Þz...zn xI{2ð Þ½ ${1

n xI{1ð Þ~1

v I n xið Þf gjð Þ:

ð11Þ

If we sum over the multiplicities in equation (11), we get

v Ið Þ~
r

I

" #XI{1

n~0

I

n

" #
{1ð Þn I{nð Þl : ð12Þ

Note that v(I) also gives us the number of possible tuples Bi(t) in the
table Y:

magnitude Yð Þ~
Xmin l:rð Þ

I~1

v Ið Þ2I : ð13Þ

For regulatory sequences with I different letters, the in-degree
distribution is

P kinjIð Þ~
N

kin

" #
I

r

" #kin

1{
I

r

" #kin

, ð14aÞ

where I/r is the probability that a randomly selected gene product
x matches one of the I different letters in the regulatory sequence.
The mean and variance of this distribution are

kin Ið Þ~N
I

r
and s2in Ið Þ~N

I

r
1{

I

r

" #
: ð14bÞ

The total in-degree distribution is thus:

P kinð Þ~
Xmin l,rð Þ

I~1

v Ið Þ
v

P kinjIð Þ, ð15Þ

where v(I)/v is the probability that a randomly selected regulatory
sequence contains I different letters. This analytical solution closely
matches the numerical estimate (Fig. 4B).

State Space
Although a graph representing the regulatory interactions

between genes tells us something about the structure of possible
interactions in the network, the full dynamics of a particular
network–what that network does–can be represented by exploring
its state space. A network activation state space contains all
possible activation states that the network can take, and the
transitions between each of them.
For a given number of genes N, there is a total of V=2N possible

activation states of the network. For a finite network size N, the
state space is also finite. Starting from an initial state, the system
will eventually return to a previously visited state. Thereafter it will
follow stable or cyclic behavior, if no stochasticity or exogenous
gene products are introduced. The set of states that constitutes a
cycle is called an attractor, and the number of states it contains is the
attractor length. All the states converging to an attractor constitute its
basin of attraction, and the number of states in a basin of attraction is
the basin size. The state space of a network can be represented as a
graph (Fig. 5), just as the possible regulatory links among genes can
be. But these two graphs are very different things. For example,
the in-degree of a gene is the number of other genes that may
regulate it; the in-degree of a particular state of the network is the
number of states at time t that will end up at that state at time t+1.
We call the in-degree of a network state the precursor number of that
state. Below we consider these characteristics of the state space of
networks of size N=10.
In a randomly constructed network, the vast majority of

network states have no precursor (Fig. 5). Such states are
unreachable by the network, unless they are used to initiate the
network in a simulation. An immediate consequence of this fact is
that the average transient time that it takes to reach an attractor
starting from an arbitrary state is very short compared to the state
space size V. To make these statements clear we have calculated
the probabilities Pp(np) and Pt(t) that an arbitrary state has np
precursors and transient time t, respectively. These quantities are
displayed in Fig. 6 for a network of size N=10. It should be noted
that Pp(0) increases as N increases (not shown) and Pp(np) may have
any value between 0 and V. Note also that the mode of the
transient time distribution shifts to the right as N increases (not
shown).

Publish-Subscribe Networks
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We consider also the basin size distribution, Ps(ns), which is the
probability of having a basin of attraction of size ns (Fig. 6C). Ps(ns)
is concentrated on values ns=V/2m, m=0,1,…,‘, and decreases
dramatically as m R ‘. This means that in an arbitrary realization
we may observe only the peaks at ns=V or ns=V/2. The case of
ns=V corresponds to a network with a single attractor whose basin
of attraction encompasses the entire network. This pattern is
similar to that found in NK networks when K is relatively small
(e.g., K=1) [29].
Fig. 7 shows the distribution of number of attractors, Pa(na), and

the probability that a given attractor has length la, Pl(la), in
randomly constructed networks of size N=10. Note that Pa(1) and
Pl(1) decrease as N increases (not shown). Below we evolve
populations of networks using selection on attractor number and
attractor length. The distributions shown in Fig. 7 for randomly
constructed networks illustrate the range of variation in these
properties available to evolution in a randomly generated
population, and they provide a benchmark against which to
measure the efficacy of evolution to find relatively small regions of
network space where fitness is maximized. Fig. 8 shows the mean
values for attractor number (na), attractor length (la), transient time
(t), and attractor basin size (ns), over a range of small values of N.
Note that the first three of these measures increase roughly linearly
with N, while basin size increases exponentially. Thus basin size
increases roughly proportional to state space size V, which itself is
an exponential function of N. It had been believed that the average
number of attractors of NK networks increased as the square root

of system size [29], but recent numerical studies [30] have shown
that this quantity increases linearly with N, as it does in our model.

Evolution of the Networks
In this section we use simulations to explore what sort of networks

can be produced by selecting for a particular property in a
population of networks. In the following simulations we restricted
the changes to point mutations (changes in single letters in either the
regulatory or coding regions of genes), and modeled the evolution of
an asexual population. The model could also be extended to include
recombination among genomes, and other types of mutations such
as gene duplications and deletions (e.g. [13]), but we leave this for a
later time. To begin, we selected on two network properties:
attractor length and number of attractors. Given that attractors
form the basis of any subsequent control of gene expression, it is
important to show the lability these properties have under a simple
selective regime. Such network traits may also relate to fitness in
biological systems by corresponding to the identity and behavior of
different cell types in multicellular organisms [2], or alternative
states of a genetic network module [31]. Here they provide a simple
first test of how the networks might evolve, and the resulting evolved
networks provide an interesting comparison with the randomly
sampled networks studied above.
In both cases we generated an initial population of 100

networks, analyzed the state space of each network and assigned it
a fitness equal to either the number of states in the largest attractor
or the total number of attractors in the state space. We then

Figure 5. State space of a randomly generated network. The state space of a network can be represented as a directed graph. Each point
(node) represents an expression state of the network, and lines (edges) connecting them represent transitions from one time step to the next. This
network has N= 10 genes, and therefore 1024 states. The network has three attractors (open circles), of which one is a single steady state where an
identical set of gene products is present at each time step, and the other two are cyclic attractors of period 2 and 4, respectively.
doi:10.1371/journal.pone.0003245.g005

Publish-Subscribe Networks

PLoS ONE | www.plosone.org 7 September 2008 | Volume 3 | Issue 9 | e3245



generated a new, non-overlapping generation of 100 networks.
Each network in the new generation was produced, without
recombination, from a single parent drawn randomly from the
previous generation. The probability that a network was selected
as a parent was directly proportional to its fitness. Each
reproductive event included a single random point mutation in
the network’s genome, with each site in either regulatory or coding
regions having an equal probability of mutation. We repeated this
procedure for 100 generations. The state space of the fittest
networks resulting from selection for attractor size and attractor
number are shown in Fig. 9.

Selecting on these particular properties resulted in some very
atypical networks. The results of these simulations were strikingly
different from randomly generated networks, such as those depicted
in [2] or in Fig. 5. For instance, the maximum attractor length in a
sample of 40,000 randomly generated networks was 31 (Fig. 7A). In
contrast, simulated evolution was able to produce an attractor length
of 254 in less than 100 generations. Similarly, selection for attractor
number produced a network with 112 attractors, far greater than the
maximum of 17 in the sample of 40,000 networks shown in Fig. 7B.
The large number of possible graphs in this network model means
that random sampling to estimate distributions of network properties

Figure 6. Precursor number, transient time, and basin size for networks of size N=10. (A) Frequency distribution of precursor number
across network states, estimated from 40,000 randomly generated networks, on a log scale. Note that P(0)<0.96 has been suppressed, meaning that
the large majority of states have no precursor. (B) Frequency distribution of transient time, estimated from 40,000 randomly generated networks. The
maximum value of t is 31 in this number of realizations. (C) Frequency distribution of attractor basin size, defined as the number of states that lead to
a given attractor, estimated from 40,000 randomly generated networks of size N= 10. Note the peaks at V/2n, n=0,1,2,…, where V= 1024 is the total
number of states in each network.
doi:10.1371/journal.pone.0003245.g006

Figure 7. Length and number of attractors in networks of size N=10. (A) Frequency distribution of length of attractors, estimated from
40,000 randomly generated networks. The maximum attractor length in this sample was 31. (B) Frequency distribution of the number of attractors in
each network, estimated from 80,000 randomly generated networks. The maximum number of attractors was 17 in this sample.
doi:10.1371/journal.pone.0003245.g007
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may fail to capture evolutionarily important parts of the space of all
possible networks. Furthermore, it appears that such atypical
networks can reliably be reached in relatively few generations, even
when the range of variation available to selection is constrained to
single point mutations as it was in these simulations.
Surprisingly, despite their rapid evolution in the character

subject to selection (attractor length and number, respectively),

these evolved networks did not seem atypical in other respects.
Their in-degree and out-degree distributions, shown in Fig. 10,
were very close to the expectation for randomly generated
networks of their size (N=10; Fig. 3). The dramatic changes in
attractor length and number were not the result of concomitant
changes in degree distribution. This independence of network
properties is further illustrated in Fig. 11. Fitness did not increase

Figure 8. Attractor properties as a function of network size in small networks. The average attractor number (A), attractor length (B), and
transient time (C) increase linearly as a function of network size N, while average basin size (D) increases exponentially.
doi:10.1371/journal.pone.0003245.g008

Figure 9. State spaces of evolved networks. (A) State space of a network evolved in a population of 100 networks after 100 generations of
selection for large attractor size. The attractor shown has length 254. Here N=10, l= 3, and p=0.5. (B) State space of a network evolved under
selection for many attractors. This network has 112 attractors. All other parameter values as in (A).
doi:10.1371/journal.pone.0003245.g009
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smoothly, but rather made occasional large jumps. In contrast,
genotypic change occurred more steadily over the course of the
simulation. Many genetic changes were neutral with respect to
attractor length. In addition, length or number of the other
attractors in the network’s state space changed without affecting
length of the longest attractor; these are phenotypic changes that
were also neutral with respect to fitness. Neither genotypic change
nor change in other phenotypic traits was a reliable predictor of
change in fitness in these simulations, despite the relative simplicity
of the trait being selected.

Evolution in an Environment
We have been treating networks as though they operated in

isolation, subject only to the gene products produced by the
network itself. Because intermediary products control the
activation of genes in our model, the introduction of any
exogenous products can influence the downstream activation
and resultant attractor of the network. This gives our model an
important additional property over the NK model: the state space,

including the number and type of attractors, is a property of a
particular network combined with a particular environment.
A network with no exogenous input has a single state space.

However, if we assume that our environment provides a constant set
of products, not produced by the focal network itself, but still able to
bind and regulate the functioning of the network, the state space for
any single network now depends on the particular environment of
exogenous products in which the network operates (Fig. 12). Under
constant environmental conditions the network will settle into one
attractor, depending on the starting point. When environmental
conditions change, the state that was previously in an attractor may
shift to the edge of a basin, and the network may move to a new
state. The introduction or removal of different products can have
many effects on the state space, such as changing the number of
attractors, the size of their basins, or the set of expression states
contained in their basins. The maximum number of possible
environments is 2r, where r is the number of possible letters in the
alphabet P. Thus the number of state space graphs corresponding
to a single network may be as large as 2r.

Figure 10. In- and out-degree distributions of evolved networks. Shown are (A) in-degree and (B) out-degree distributions for the evolved
network in Fig. 9A, the result of selection on attractor size, and (C) in-degree and (D) out-degree distributions for the network in Fig. 9B, the result of
selection on attractor number. These distributions may be compared to the random expectations for N= 10 in Fig. 3.
doi:10.1371/journal.pone.0003245.g010

Figure 11. Genotype, phenotype, and fitness in a single evolving lineage. Shown are three network properties over 100 generations in the
lineage leading to the network shown in Fig. 9A. Genotypic divergence (dotted line) is the number of letters x in the network sequence, either in
regulatory or coding regions, different from the ancestor. Changes in phenotype (open circles) are points at which the attractors of the network
change, whether or not this results in a change in length of the longest attractor. Fitness (solid line) is the length of the longest attractor in the
network state space. Note that changes in either genotype or phenotype may be effectively neutral, without corresponding changes in fitness, and
that large changes in fitness can occur with relatively small changes in genotype.
doi:10.1371/journal.pone.0003245.g011
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One property of a network is the degree to which these state
spaces are similar, or fall into broad groups. This similarity may be
considered a measure of the environmental robustness of the
network. If the network continues to act relatively unchanged (the
attractors remain constant) in various environments (differing
exogenous inputs), then the network operation is robust to these
changes. Although robustness in Boolean networks can be thought
of in this way, our model permits us to explore a much more
dynamic sense of robustness (in contrast with [9], for example).
The environments in which genetic networks operate are both
sources of noise and sources of important signals, either from the
external environment, from other parts of a multicellular
organism, or from other modules in the organism’s overall genetic
network [31]. Fitness depends on responding appropriately to the
signals and ignoring the noise. Viewed in this way, what must be
robust is the reaction norm of the network–its ability to react in a
plastic and appropriate manner under various environments by
distinguishing signal from noise.
We simulated evolution in a series of simple environments, in

which fitness was determined by their ability to respond

‘‘appropriately.’’ If some indicator product was present in the
environment, a network had high fitness if it produced some other
functional product. If another indicator product was present, the
network was fit if it produced a second, different, functional
product. A network had high fitness by doing the right thing at the
right time: in environment A, produce product a, and in
environment B, produce product b. Doing the right thing implies
not doing the wrong thing also–producing product b in
environment A reduced fitness, and a network that simply
produced a and b constitutively did not have high fitness. We
selected on networks’ ability to respond correctly to two different
environments that alternated over time.
We evolved a population of 100 networks of size N=10. Each

network was exposed to the first environment for 10 time steps,
and then switched to the second environment for another 10 time
steps. The networks were then returned to the original
environment. This environment switching continued until the
network had been exposed to each environment 5 times. Fitness
was calculated as the number of correct functional products
produced, minus the number of incorrect functional products,

Figure 12. State space of a single network subject to different environmental conditions. Shown are the state spaces of a single network
of size N= 10 under four different environments. Each environment represents a different set of gene products that are constantly present (e.g.
exogenously produced) and available to bind to regulatory regions in the network. Note that a single network can vary in both the number and size
of attractors depending on the environment.
doi:10.1371/journal.pone.0003245.g012
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summed across all time steps. Gene products that were not the
functional product in either environment did not affect fitness.
In addition to this alternation of environmental signals, we

tested the ability of networks to evolve robustness to environmental
noise. In the stable environment, the only exogenous products
were the indicator products. In this simulation the evolved
networks quickly behaved exactly as required, changing their
required output in the presence of different indicator products. In
the noisy environment, the indicator product was present with 2
other products, randomly chosen at each time step. Achieving a
high fitness under noisy conditions was more difficult to evolve,
and the networks remained at lower fitnesses throughout the
simulation under noisy conditions. However, we found that a
network that had evolved in a noisy environment would often
perform perfectly in a stable environment.
What sort of difference is there between a network evolved in a

stable environment and one evolved in a noisy environment? We
tested this by subjecting the fittest network from each simulation to
a number of trials (10,000) in a noisy environment. The sample
distributions generated are shown in Fig. 13. We assessed both the
original network (steps = 0) and a sample of 1-, 2-, and 3-step
mutants from this network. This gives us some idea of the fitness of
the networks in the local mutational neighborhood, and thus an
indication of the ruggedness of the fitness landscape close to the
peak on which the evolved network sits. Evolving the networks in a
noisy environment did indeed produce a more consistently
environmentally robust network, shown by both the relative
positions and the widths of the peaks in the frequency distributions
in Fig. 13. The decline in fitness with increasing numbers of
mutations away from the original network is similar for the
networks evolved in both stable and noisy environments. Thus
these networks have roughly equivalent mutational robustness. In
terms of the fitness landscape, the fitness peaks to which the
networks have evolved in both stable and noisy environments are
somewhat intermediate between broad plateaus and precipitous
spires, which would allow for some near-neutral variation to
persist in mutation/selection balance.

Discussion

Simple models of genetic networks have led to general conclusions
about the properties of network architecture and how they affect
network evolution [1,2,4,5,32]. At the same time, a growing number
of technological and analytical tools allow the direct measurement of
regulatory networks in natural systems [33–39], so that a number of

empirical networks have been described in detail [21,28,40,41]. In
seeking to connect these growing fields, modeling efforts can proceed
by adding layers of complexity and assessing the degree to which
features of the model better approximate empirical results. Here we
have added a degree of complexity to simple NK networks, using a
publish-subscribe view of gene regulation. Although our model shares
some basic similarities with the NK model, we have found some
tantalizing differences in both the properties of single networks and in
the evolution of populations of networks.
First, the pattern of degree distributions from randomly

constructed networks in our model is substantially different from
that of previous models. In Kauffman’s [1] original NK model,
each gene has exactly K inputs and in-degree distribution is
therefore a Dirac delta function. In randomly constructed
networks under the ‘‘standard’’ NK model [4], regulatory inputs
to each gene are assigned independently with a given probability,
resulting in unimodal binomial (or equivalently for large N,
Poisson) distributions for in- and out-degree. In scale-free
networks, in-degree distribution follows a power law P(k),k2c

while out-degree follows a Poisson distribution, or vice versa [4].
In contrast, our publish-subscribe model produces an in-degree
distribution that is multimodal due to the superposition of
binomial distributions with different mean values. The fact that
in-degree and out-degree distributions differ in form from each
other in our model also contrasts with the standard NK model.
This qualitatively different pattern is a consequence of the
matching rule between the different nodes, i.e. between the
coding and regulatory sequences. Thus, although the networks in
our model exhibit similar dynamics to those of Boolean NK
networks, the distributions of basic network properties differ as a
result of the publish-subscribe regulatory framework. A network
model based on a similar matching rule was able to reproduce
global topological properties of the yeast gene regulatory network
[25]. These properties include not only degree distributions, but
also other network descriptors such as clustering coefficient, rich-
club coefficient, degree-degree correlation, and k-core decompo-
sition.
This divergence from previous models is echoed as well by the

networks evolved in our simulations. Generally, degree distribu-
tion is believed to be a central feature of a network and a key
predictor of its dynamic behavior in other respects [5]. For
example, the importance of scale-free degree distributions for
other properties like robustness and evolvability has been
established in several studies of NK networks [4,42]. However, in
our publish-subscribe model, it appears that dynamic behavior

Figure 13. Fitness of evolved networks in noisy environments. Frequency distributions of fitness for single evolved networks subjected to
10,000 trials in a noisy environment. Solid lines indicate the fitness of the evolved network, while dashed lines indicate the fitness of networks that are
1, 2, or 3 mutational steps away from the evolved network. (A) Fitness of the network produced by evolution in a stable environment. (B) Fitness of
the network produced by evolution in a noisy environment.
doi:10.1371/journal.pone.0003245.g013
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may be to some extent uncoupled from degree distribution. In the
simulations above, attractor length and number evolved far
outside the distribution expected from randomly generated
networks, but degree distribution remained remarkably similar
to random. The degree distributions of the evolved networks give
us no clue to the general principles by which length and number of
attractors may evolve. Conversely, degree distribution may be a
poor predictor of other network properties in this model. Other
topological properties (e.g. [25]) may be more relevant to the
evolutionary dynamics of our publish-subscribe model, and this
issue should be explored further. However, additional metrics that
are directed toward specific tasks, such as robustness to various
types of change, may be necessary to fully compare across
networks and predict evolutionary dynamics.
In the broader context of dynamic behavior and evolution of

genetic regulatory network models, two issues have received
particular attention: evolvability and robustness. A critical
component of evolvability is the presence of neutral variation in
a population [43–46]. Evolution in our network model produces
neutral variation in genotype, as seen in Fig. 11, that has no
immediate effect on either phenotype or fitness. From an adaptive
landscape perspective, this neutral change can be seen as
meanderings along neutral ridges in the landscape [47,48]. The
importance of this neutral variation is its effect on the fitness of
subsequent mutations. In our model, as in natural systems [49],
genes often interact epistatically, so that the fitness effect of a single
mutation depends on the allelic states of other loci. Thus the
genetic background against which a mutation arises may
determine whether it is favored by selection, and therefore
whether it sweeps to fixation and increases the average fitness of
the population as a whole. Neutral mutations change the genetic
background that determines both the sign and the magnitude of
the fitness effects of subsequent mutations.
Our network model illustrates the mechanism of neutral

variation in the publish-subscribe view of gene regulation. For
example, regulatory binding sites may mutate to a state for which
there is not currently a matching gene product being produced. At
the time, this mutation may be neutral, with no effect on the
phenotype of the network. However, this mutation has created a
new subscriber, ready to receive a signal from a publisher, or
coding region. Such a mutation in a publisher may occur in the
future, and thus a new connection is made between two genes. In
addition, the number of transcriptional regulators (gene products)
is limited in our model [15,50]. As a result, multiple neutral
mutations in the form of publishers (or subscribers) tuned to the
same signal can accumulate as neutral changes with no effect on
fitness. When a single mutation in a subscriber (or publisher) shifts
to the matching signal, multiple new connections are formed. The
effect on phenotype, and perhaps fitness, as a result of this single
mutation is magnified by the presence of existing variation. In fact
the ability of mutations to have broader effects on phenotype in
this way may be an important component of evolvability [51].
In our simulations we explored the evolution of environmental

robustness, which is the ability of a network to perform (i.e.,
maintain high fitness) in the face of a noisy environment.
Incorporating the ability for networks to react to the local
environment enables us to explore a number of possibilities. Here,
we have emphasized that robustness can be a dynamic, rather than
a static, property of networks. The publish-subscribe model allows
us to evolve networks whose reaction norm is robust under noisy
environments. The shift from a static to a dynamic conception of
robustness may have important implications. Consider an idea
introduced by Kauffman [2], in which the attractors in genetic
networks are viewed as analogous to cell types in a multicellular

organism [52]. For the NK model, the attractor into which a
network falls is fixed for a particular genetic network and the
starting conditions. In multicellular development, however, the
environment is, in part, other cells, and the process of
differentiation may be driven by dynamic interactions between
cells rather than the isolated properties of a single cell [53]. The
evolution of this plastic response to the local cellular environment,
and the evolution of its subsequent robustness, may be a key
element in understanding the emergence of multicellularity [54].
Alternatively, the focal network may be a module of a larger
genetic network, and organismal fitness may depend on the
network’s ability to respond appropriately to signals from other
modules.
A large number of issues could be explored further with the

publish-subscribe model. First, in our estimates of degree
distribution, we considered two genes to be connected if the
coding region of one gene matched a site in the regulatory region
of the other. However, this ignores the particular Boolean rules of
expression for the second gene, whose expression state may not
actually depend on the first gene’s product; in fact, whether this
dependence is present may itself depend epistatically on the
expression states of yet other genes [2]. Calculation of degree
distribution in this expanded sense soon gets quite complicated,
although it may be necessary for more direct comparisons to
empirical data, such as gene co-expression networks or expression
time series [34].
Second, we assumed here that a single coding region produces a

sufficient concentration of gene product to bind any number of
matching regulatory sites. The consequences of this assumption, or
alternatively of competition among binding sites for limited gene
product copies, could be explored further. Relaxing this
assumption would not change the observed patterns of degree
distribution of networks, according to the rules by which we
calculated it. However, it would introduce an element of
stochasticity into the activation of genes at each time step if single
gene products were to bind to either one or another regulatory site
with some probability between 0 and 1. As a result, our conception
of the state space of a network would also change. Under the
current assumption, the out-degree of any node in the state space
network is one, but relaxing this assumption would produce some
states with probabilistic edges connecting to multiple other states.
This would result in an additional concept of robustness that could
be explored: the robustness of attractors to stochastic shifts outside
of their attractor basin as a result of the stochastic binding of gene
products.
Third, one could explore the consequences of variation in

several of the parameters. Our goal here was to explore the
properties of the simplest publish-subscribe model, so in our
evolutionary simulations we held alphabet size, regulatory region
length, and total network size constant. Varying these parameters
across networks may have implications for measures of network
topology and for the evolutionary dynamics of populations of
networks. Regulatory region length could also vary across nodes
within a network; in a network model similar to ours such
variation produced similar qualitative behavior but improved the
fit to empirical data on topological descriptors from yeast networks
[25]. Change in this parameter has also been implicated in the
evolution of organismal complexity [55]. Among other effects,
longer regulatory regions would provide a larger mutational target
for regulatory versus coding regions. It remains an outstanding
question to what extent changes in regulatory versus coding
regions play different roles in phenotypic evolution [56,57], and
the publish-subscribe model explicitly separates the two. We plan
to address this issue in future work. In our simulations, we used
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networks of relatively small size (N=10), which can be thought of
as modules within a larger network. However, simulations of
larger networks, particularly in the noisy or fluctuating environ-
ments that we described, could be used to address the evolution of
modularity itself; that is, do networks evolve some degree of
internal separation of components that partition the response to
environmental signals? Alternatively, can the behavior of larger
networks be adequately represented by studies of smaller
networks?
Finally, we addressed network evolution solely in the context of

single-step mutations. The publish-subscribe model could easily be
extended to address other types of mutations, such as gain or loss
of binding sites in regulatory regions, gene duplication and
divergence [13], or whole genome duplication. Nonetheless, our
results suggest that the publish-subscribe model holds remarkable
evolutionary potential even when mutation is restricted to single
steps.
Our publish-subscribe model of genetic regulatory networks

adds a layer of complexity to the common NK networks by making
the gene regulation process more explicit, and by using a rule
system for matching gene products to regulatory sites that affect
the expression state of other genes. In this way it is similar to yet

more complex models. Examples include the Artificial Genome
class of models [58–61], which create an information sequence
analogous to DNA, and content-based networks [19,25,62], where
the focus is on the topological properties of the networks rather
than their dynamics. The production of new, more complex,
variants on well-studied models in biology can often aid in two
ways. First, the introduction of new parameters might suggest that
there is behavior outside the scope of the simpler model. Second,
the introduction might allow us to ask different questions. The
publish-subscribe model appears to do both.
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