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Abstract

The boom of massive parallel sequencing (MPS) technol-

ogy and its applications in conservation of natural and

managed populations brings new opportunities and

challenges to meet the scientific questions that can be

addressed. Genomic conservation offers a wide range of

approaches and analytical techniques, with their respec-

tive strengths and weaknesses that rely on several impli-

cit assumptions. However, finding the most suitable

approaches and analysis regarding our scientific question

are often difficult and time-consuming. To address this

gap, a recent workshop entitled ‘ConGen 2015’ was held

at Montana University in order to bring together the

knowledge accumulated in this field and to provide train-

ing in conceptual and practical aspects of data analysis

applied to the field of conservation and evolutionary

genomics. Here, we summarize the expertise yield by each

instructor that has led us to consider the importance of

keeping in mind the scientific question from sampling to

management practices along with the selection of appro-

priate genomics tools and bioinformatics challenges.
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Conservation and evolutionary genetics are rapidly shifting

from a genetic to a genomic perspective, where studies

assess thousands of DNA markers in hundreds of individ-

uals (Allendorf et al. 2010; Ouborg et al. 2010; Stapley et al.

2010; Narum et al. 2013; McMahon et al. 2014). The field

has benefited from previous developments in population

genomic studies of model organisms, especially in human

(see examples reviewed in Allendorf et al. 2010). For

instance, the Human Genome Project has reshaped life

sciences and medicine by making life digital as a part of

the ‘big data’ era (Tyler-Smith et al. 2015). A practical and

conceptual framework for effective study design and ana-

lytical approaches is needed to help guide the new genera-

tion of population geneticists in using large-scale genomic

data set. Indeed, integrating knowledge about many of the

new molecular and computational tools available for ana-

lysing genomic data sets is crucial to answering questions

in evolutionary and conservation biology. With knowledge

of the tools available, researchers should use the underly-

ing scientific question to guide all aspects of a conservation

or evolutionary genomic study, from experimental design

through data analysis (see Fig. 1).

To help educate population genomics researchers, 15

experts in the field of conservation genomics directed a 1-

week workshop called ‘ConGen 2015’ (abbreviated from

Conservation Genetics) at the University of Montana Flat-

head Lake Biological Station. This meeting review was

written for everyone interested in population genomics,

from graduate students to professors and resource man-

agers. Here, we highlight the key topics and important take

home messages discussed during the workshop, with an

emphasis on the recent pertinent literature in this field.

More particularly, we described (i) how to design a mas-

sively parallel sequencing (MPS) study for a model or non-

model species, (ii) how to filter DNA sequence data from

MPS data (i.e. extracting loci and/or SNPs on the basis of

criteria) and (iii) to analyse MPS data using classic (e.g.

clustering algorithms) and recent approaches (e.g. likeli-

hood algorithms), within traditional or new pipelines (e.g.

GALAXY). This overview will allow researchers to better
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understand some of the strengths and limits of recent

molecular and computational approaches.

Designing a MPS study: keeping in mind your

biological question

One of the biggest differences in using MPS data vs. classi-

cal genetic data (e.g. microsatellites) is the amount of time

spent on data analysis, with data production outpacing our

ability to analyse it. As stated by ConGen instructor Paul

Hohenlohe, it is not just about generating data. Conserva-

tion genomics offers an unprecedented genomic perspec-

tive by using large numbers of markers to simultaneously

genotype putatively neutral and adaptive loci, thus offering

glimpses into adaptive potential (Allendorf et al. 2010; Har-

risson et al. 2014). Then, designing a MPS study requires

the consideration of a large number of factors represented

by Fig. 1 and recently reviewed by Andrews et al. (2016).

The most important starting point remains, ‘What is your

scientific/biological question?’ This should determine how

a researcher navigates all subsequent questions such as

‘What is your sampling design and how should you allo-

cate your budget among samples, populations, individuals,

loci and depth of sequence coverage?’ Question-driven

rather than method-driven research allows researchers to

not be limited by the methodological tools available, thus

offering the flexibility and openness required to find the

appropriate method that answer their question. For

instance, recent simulation studies showed that a sampling

design with geographically close populations (with recent

gene flow and thus low genome-wide FST) across a selec-

tion gradient (environmentally distinct locations) had high

power to detect local adaptation (Lotterhos & Whitlock

2015).

When do you need to sequence the entire genome vs.

only genotype hundreds or thousands of loci to answer

your question (Ellegren 2014)? For equivalent budgets, a

large number of individuals can be genotyped at lower

coverage, if you are interested in accurate estimates of pop-

ulation parameters (e.g. gene flow, FST-outlier loci),

What types of data are necessary to answer it ?

What is your sampling design?
Number and distribution of individuals and populations

How many (and what kind of ) loci do you need?
Statistical estimator or computational approach and power analysis

What is your budget?
Do you have a reference genome?

What depth of coverage is needed?

Which genomics tools?
   Whole-genome resequencing, transcriptome sequencing (RNA-seq), 

targeted sequencing (exon capture), anonymous genomic sequencing (e.g., RAD-seq, Rapture)

Access to  NEUTRAL and ADAPTIVE variation 

Conservation genomics framework

Outliers from background indicate:
    . Selective sweeps & other selection              
      signatures
    . Local adaptation
    . Response to environmental change  
    . Adaptive introgression

Genome-wide background provides
 more precise estimates:
    . Demographic processes (e.g. , Ne)
    . Population structure & assignment
    . Migration rates & admixture
    . Individual inbreeding (IBD)

UTRAL DAPTI

- 
(e.g., de-multiplexing, sequence and sample quality, identify PCR duplicates)

- Assigning reads to loci 
(e.g., alignment to a reference or de novo)

- Calling genotypes 
(e.g., genotype likelihood, coverage)

  - 
        (e.g., SNPs per locus, MAF,          

observed heterozygosity,
LD)

Fig. 1 Practical framework with steps for

designing a MPS study. All along the

process researchers involved in MPS pro-

jects are faced with logistical trade-offs in

order to accurately and efficiently answer

their scientific question. The process is

not straightforward and unidirectional

but feedbacks and/or interactions are

possible and common among all steps.

‘What kind’ of loci refers to characteris-

tics such as loci in genes, linked loci or

haplotypes (for genealogical informa-

tion), mapped loci often required for

QTL studies or runs of homozygosity, or

long loci (e.g. long RAD contigs from

paired-end reads). The ‘distribution of

populations’ refers to the need to sample

populations from different landscape

locations or across environmental gradi-

ents when conducting landscape genetic

or genomic studies. ‘SNPs per locus’

refers to the fact that researchers might

use only one SNP per RAD locus (to

ensure independent SNPs). Rapture,

MAF, LD and IBD are acronyms for

RAD-capture (Ali et al. 2015), Minor

Allele Frequency, Linkage Disequilib-

rium, and Identity By Descent respec-

tively. Note that SNP chips are an

alternative genomic tool (not in this fig-

ure), often use MPS for SNP discovery.
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whereas few samples could be genotyped at a higher cov-

erage when you need to genotype individuals accurately

(e.g. to assess individual inbreeding level). Do you have an

a priori hypothesis about the features of your biological

model system or species (e.g. the colonization history, the

generation time, small and isolated vs. large and panmictic

populations, dispersal capabilities, heterogeneous vs.

homogeneous habitats) that could help you to predict the

level of genetic diversity, the effect of genetic drift and the

extent of the selective pressures?

Existing methods for MPS data analysis

Low-coverage genotyping methods and genotype likelihoods

(Mike Miller)

Novel Bayesian methods that aim to analyse efficiently

low-coverage genomic data are blooming (Le & Durbin

2011; Yu & Sun 2013; Cantarel et al. 2014). Understanding

theory behind the application of Bayesian models to low-

coverage genomics data is crucial and begins with learning

how to calculate genotype likelihoods from DNA

sequences. Thus, Mike Miller instructed students how to

calculate genotype likelihood based on sequencing errors,

coverage and priors probabilities (i.e. uniform or Hardy–
Weinberg Equilibrium model). He showed how these key

factors could significantly affect genotype likelihood results

and then many downstream analyses (Sims et al. 2014).

These analyses may then suffer from SNP calling and

genotype uncertainty, which lead to inaccurate demo-

graphic inferences (Nielsen et al. 2011). One way to over-

come this bias could be to sample larger numbers of

individuals at the expense of coverage depth in order to

gather more information about population parameters, as

suggested by Buerkle & Gompert (2013).

The importance of removing PCR duplicates (reads

resulting from PCR clonal amplification of the same origi-

nal DNA strand) was also underscored because of their

potentially distorting influence on the calculation of geno-

type likelihoods (overconfidence into a genotype called

only based on PCR duplicates) as suggested by Puritz et al.

(2014b). PCR duplicates can easily be removed from

paired-end restriction site associated DNA (RAD) sequenc-

ing data sets by identifying paired-end reads starting at

identical position (Davey et al. 2013) and from genotyping-

by-sequencing (GBS) data sets by using degenerate-base

adaptors (Tin et al. 2015). Similarly, paralogs should be

excluded from the analysis by detecting reads with high

coverage, although genomic data sets often have high vari-

ance in coverage across loci (see Fig. 2; Malhis & Jones

2010). Finally, M. Miller also presented new computational

approaches to detect genotyping errors, along with a new

genotyping approach that combines RAD-seq with DNA

Fig. 2 Roadmap for filtering reads from massively parallel sequencing (MPS).
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capture arrays for low cost genotyping (Ali et al. 2016; Nor-

gaard et al. in press). Calling genotypes based on their like-

lihoods can be easily performed with ANGSD (Korneliussen

et al. 2014) and GATK (DePristo et al. 2011) programs.

Mapping reads to a reference genome (Paul Hohenlohe)

Aligning anonymous sequence reads against a reference

genome assembly provides many advantages for filtering

data (e.g. removing erroneous or clonal PCR duplicate

reads) and identifying loci (Hand et al. 2015a). If a refer-

ence genome is unavailable for the focal species, P. Hohen-

lohe advised using well-assembled genomes from related

taxa. Efforts such as the Genome 10K project (https://

genome10k.soe.ucsc.edu/) and the i5k Insect Genome pro-

ject (https://arthropodgenomes.org/wiki/i5K) are rapidly

growing the number of taxa for which this is possible. The

issue of how closely related is ‘closely related enough’ to

be useful for alignment depends on details of the data set,

such as the sequence read length and whether more con-

served regions such as genes are targeted for sequencing.

A poorly assembled reference genome can still be useful

for assigning reads to loci and finding functional genes

linked to candidate markers, even if it does not provide a

complete physical map of the genome (e.g. Hand et al.

2015a,b).

Techniques like paired-end RAD sequencing (or exon

capture) can also be used to build a set of contig sequences

for nonmodel species, which then provide a reference for

further population-level sequence data (Hohenlohe et al.

2013; Jones & Good 2016). When faced with limited

resources, P. Hohenlohe cautioned against pool-sequencing

(i.e. pooled sequencing of many individuals without bar-

code) because of the pitfalls associated with estimating

allele frequencies (missing rare variants), identifying par-

alogs, distinguishing true alleles from sequencing error

and hidden population structure. Whereas pooling showed

promising results for accurate allele frequencies estimates

(Futschik & Schl€otterer 2010; Ferretti et al. 2013; Lynch et al.

2014), this approach is often less desirable than individual

sequencing for a wide range of applications such as Struc-

ture analysis, parental assignment and genome scans (re-

view in Cutler & Jensen 2010).

STACKS workflow tutorial, STACKR package and GALAXY (Laura

Benestan and Tiago Antao)

There is a need for standardization and documentation of

the many filtering and processing steps (Fig. 2) required to

clean and use MPS data (e.g. by multiple researchers

within a research group or the larger scientific community).

Laura Benestan also emphasized that standardization helps

ensure repeatability. The STACKS workflow tutorial created

by �Eric Normandeau for Louis Bernatchez’s research group

at Laval University was designed to facilitate, standardize

and document (in a log file) each of many filtering and

analysis steps in discovery and genotyping of putative

SNP markers from GBS/RAD sequencing data using the

STACKS program (Catchen et al. 2013). STACKS is a widely

used pipeline for analysis RAD-seq data but other pipeli-

nes such as PYRAD (Eaton 2014), RADTOOLS (Baxter et al.

2011), GATK (McKenna et al. 2010), DDOCENT (Puritz et al.

2014a) could also be used for calling SNPs. More particu-

larly, PYRAD, DDOCENT and more recently STACKS are promis-

ing workflow programs that can handle insertion–deletion
polymorphism into the alignment of the reads.

The STACKS workflow uses universal tools, including cus-

tom scripts, to standardize and make repeatable all aspects

of the pipeline, while also highlighting areas where the

researcher should exercise caution in the choice of parame-

ter values. The workflow is freely available on GITHUB

(https://github.com/enormandeau/stacks_workflow). The

included manual describes each step required for perform-

ing MPS analyses in STACKS from downloading and instal-

ling STACKS to filtering the results. Raw single-end data

produced by Illumina or Ion Proton technology are sup-

ported.

Post-STACKS analyses and data filtering (Fig. 2) can be con-

ducted with the R package STACKR (Gosselin & Bernatchez

2016). This package is freely available on GITHUB (https://

github.com/thierrygosselin/stackr). STACKR contains several

R functions that allow users to: (i) read and modify outputs

from STACKS, (ii) filter markers based on coverage, genotype

likelihood, number of individuals, number of populations,

minor allele frequency, observed heterozygosity and

inbreeding coefficient (FIS), (iii) explore distributions of sum-

mary statistics and create publication-ready ggplot2 figures,

(iv) impute missing data using a Random Forest algorithm

and (v) export data sets in vcf, genepop, fstat files or as gen-

ind objects to be easily integrated into other R packages for

population genomics analyses.

Tiago Antao also demonstrated web-based GALAXY soft-

ware platform (https://galaxyproject.org), which could

help with standardization of filtering and genotyping.

GALAXY produces flow-chart diagrams (of filtering steps)

and log files to help researchers reproducing and sharing

complete ‘pipeline’ analysis with others. GALAXY is an inter-

esting tool for data visualization as it could efficiently

draw graphics (i.e. graphics of the distributions of quality

scores) that allow users to explore and navigate their data.

Running STACKS and related filtering approaches could be

also done easily from this web-platform.

The ‘F-word’: filtering (Jim Seeb)

Genomics involves the genotyping of thousands of loci,

genome-wide, to bring unprecedented resolution to prob-

lems of conservation planning (Allendorf et al. 2010; Shafer

et al. 2015). However, this bright future for genomics hides

the numerous filtering issues inherent to MPS data sets,

which Jim Seeb referred to as the ‘F-word’. For instance,

merging data sets filtered using different parameters could

create spurious results such as strong and significant (but

false) FST-outlier values between differently filtered popula-

tion samples. The lack of necessary details on the filtering

steps in many of today’s publications using MPS data

© 2016 John Wiley & Sons Ltd
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would affect the transparency and reproducibility of the

results. This would contribute to the trend that most of the

MPS studies cannot be accurately verified (Nekrutenko &

Taylor 2012). To encourage scientist to publish and under-

stand these important filtering steps, Fig. 2 reports some of

the main filtering issues (associated with sequencing and

assembling errors) that should be addressed in a MPS pro-

ject. A complete and exhaustive publication will bring

detailed recommendations and pipeline to conduct accu-

rate filtering steps on MPS data in a forthcoming Popula-

tion Genomics in R—Molecular Ecology Resources special

issue. Identifying markers of interest through filtering steps

could be done according to single SNP or haplotype

approach, the latter being a possible alternative to over-

come issues regarding linkage disequilibrium (LD; Fig. 2).

Nevertheless, it is important to keep in mind that the

appropriate level of filtering will always depend on the sci-

entific question and the available data set (Andrews et al.

2016).

In addition, RAD locus discovery and genotyping is

often inhibited by the existence of duplicated genes and

genomic regions (Allendorf et al. 2015; Andrews et al.

2016). Gene duplication occurs because of segmental dupli-

cation (unequal crossing over) or whole genome duplica-

tion (Amores et al. 2011). Loci can be assayed in duplicated

regions by constructing linkage maps and genotyping with

SNP chips or potentially with very deep GBS coverage

(Waples et al. 2015). Distinguishing and including paralo-

gous loci on the linkage map will allow researchers to cir-

cumvent the issues of producing an incomplete picture of

the genome (Brieuc et al. 2014; Kodama et al. 2014) and

introducing bias into genetic estimates parameters (Meir-

mans & Van Tienderen 2013).

Structure program insights and tips (Jonathan Pritchard)

Jonathan Pritchard provided an overview and practical

advice about the application of the program Structure

(Pritchard et al. 2000). J. Pritchard explained that it is often

unrealistic to expect that there is one ‘true’ K that is best for

modelling a particular data set. Through simulations, Kali-

nowski (2010) showed that sometimes Structure clustered

individuals in unpredictable ways, which is because the

Structure model is a cartoon (simplification) of more compli-

cated natural population. Therefore, viewing and reporting

plots for multiple K-values is an important step (Gilbert

et al. 2012) because different values of K can give insights

into different levels of structure. Similarly, the selection of

the optimal K is not an exhaustive procedure and has to be

done with regard to the biology and the history of popula-

tions studied (Kalinowski 2010). For instance, the optimal

number of clusters (K) found by Structure or subsequent

analysis (e.g. Evanno et al. 2005) may have no biological

reality and could result from a context of isolation by dis-

tance, where Structure tends to overestimate genetic struc-

ture (Frantz et al. 2009). In the same vein, a recent

simulation study showed that unbalanced sample size leads

to wrong demographic inferences where smaller samples

tend to be merged together (Puechmaille 2016). To over-

come these issues, alternative methods such as principal

component analysis or evolutionary trees could be tested in

regard to Structure analysis (Jombart et al. 2010; Kalinowski

2010; Kanno et al. 2011; Benestan et al. 2015).

Reviewers often request extremely long Structure runs

(millions of iterations). J. Pritchard claimed that is gener-

ally unnecessary and wasteful of researcher time (and car-

bon footprint). For most data sets, he would recommend to

do about 10 000 steps, but multiple times to assess robust-

ness and convergence of the results. Structure tends to con-

verge fairly quickly, but the program does not do a great

job of exploring between local peaks in parameter space of

the posterior distribution. Therefore, for an exploratory

analysis, it would be more efficient to spend the computa-

tion time on independent runs (which have a good chance

of finding distinct modes) than doing extremely long runs

where the algorithm will be simply wandering around

within one mode. Nevertheless, a certain minimum burn-in

and run length helps overcome the stochasticity of the

Monte Carlo approach, as recommended by Gilbert et al.

(2012).

Improving our detection of local adaptation (Lisa Seeb)

Understanding genetic basis of local adaptation is one of

the most exciting potential contributions of genomics to

conservation biology (Allendorf et al. 2010). The most

widely used methods for detecting evidence of selection

are genome scan approaches based on differentiation (FST)

outlier tests originally developed by Lewontin & Krakauer

(1973), then refined more recently by Beaumont & Nichols

(1996) and others (Beaumont & Balding (2004), Foll & Gag-

giotti 2008). Several programs were designed to perform

genome-wide outlier scan analysis such as LOSITAN, which

is based on a stochastic FST null distribution (Antao et al.

2008), Arlequin (Excoffier & Lischer 2010) which includes a

hierarchical model, and BayeScan (Foll & Gaggiotti 2008)

which is based on a Bayesian FST distribution. Since each

method has its drawbacks, requiring outliers (candidate

adaptive genes) to be identified in multiple methods can

help to reduce the incidence of false positives (Narum &

Hess 2011; Villemereuil et al. 2014; Franc�ois et al. 2016)

because these different methods may tend to agree more

on true positives than on false positives. Lisa Seeb

described the work of DeMita et al. (2013) who investigated

the robustness of eight methods to detect loci potentially

under selection according to eight demographic scenarios

along an environmental gradient. Their work showed that

whereas genotype–environment correlation methods have

more power to detect signal of selection than genome

scans, these methods were more prone to false positives

when assessing these associations.

The importance of incorporating neutral genetic structure

into genotype–environment correlation methods has led to

the emergence of two recent software packages: BAYESCENV

(Villemereuil et al. 2014) and LFMM (Frichot et al. 2013).

However, as well as using suitable methods, L. Seeb

© 2016 John Wiley & Sons Ltd
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emphasized that an appropriate sampling design is crucial

to test for evidence of local adaptation. For instance, ana-

lysing sets of independent populations (‘replicates’) across

similar environmental gradients helped Larson et al. (2014)

to find signals of selection in Chinook salmon. In addition,

mapping outliers to find chromosomal islands of diver-

gence can help to identify functional genes involved in

local adaptation. We advise scientists interested in the uti-

lization of environmental association analysis in genomics

to read Hand et al. (2015b), Rellstab et al. (2015) or Van

Heerwaarden et al. (2015). Researchers should be aware

that new and improved tests as well as evaluations of tests

are published frequently (e.g. see Foll et al. 2014; Whitlock

& Lotterhos 2015; Jensen et al. 2016).

The use of genomics for management decisions

Effective population size (Ne) estimation (Robin Waples)

Robin Waples taught concepts of the effective population

size by using an analogy of a lottery. Imagine the ability of

parents to produce viable offspring for the next generation

depends on a lottery system. In a Wright-Fisher (ideal)

population, everyone has the same number of tickets, and

sampling is with replacement. In real populations, different

individuals have different numbers of lottery tickets

because some of them will reproduce more than others,

and hence they have different probabilities of being par-

ents, thus reducing Ne compared to census size. He enu-

merated the different methods that can be used to estimate

contemporary Ne: temporal methods, LD methods, approx-

imate Bayesian computation (ABC) methods, and other sin-

gle estimators based on heterozygote excess (Pudovkin

et al. 1996), molecular co-ancestry (Nomura 2008), and sib-

ship analysis (Wang 2009). ConGen participants were also

reminded that these methods make several important

assumptions: no migration, no selection, mutation is unim-

portant, discrete generations, random sampling of an entire

generation and loci not physically linked.

R. Waples mentioned that genetic estimates of either con-

temporary or long-term Ne benefit from the proliferation of

the number and types of markers, but this also introduces

challenges, largely because of a) LD, which is unavoidable

when large numbers of markers have to be packaged into a

small number of chromosomes, and b) pseudo-replication

because of linkage, markers are not independent, so adding

more and more loci does not increase precision as fast as it

would under complete independence. LD is predicted to be

the next big issue in dealing with genomics data since multi-

locus sampling improves whereas classic analyses such as

Ne estimation, genome scan and clustering algorithms trea-

ted the loci as independent (Baird 2015). Kemppainen et al.

(2015) present a useful exploratory tool (named LDna) able

to give a global overview of LD associated with diverse evo-

lutionary phenomena and identify potentially related loci.

Based on simulations, (R.K. Waples, W.A. Larson, R.S.

Waples, in review) showed that more loci do not increase

the fraction that is physically linked, since most random

pairs of loci are not linked. If linked loci downwardly bias

Ne estimates (Larson et al. 2014), the bias from ignoring link-

age is less severe when the number of chromosomes is large.

Finally, strategies that filter out a locus in outlier pairs of loci

are only partially effective and a bias correction factor based

on the number of chromosomes is probably more effective

(R.K. Waples, W.A. Larson, R.S. Waples, in review). Videos

recording R. Waples’ Ne lecture can be viewed at https://

www.youtube.com/watch?v=ErhACWXRLss and https://

www.youtube.com/watch?v=N3JbKZbKO5w

Defining conservation units: ESUs and MUs (Robin Waples)

Integrating genomic data into management can be chal-

lenging in practice. For instance, there is no single best or

correct way to answer the questions ‘what is a population’

and ‘how to identify the suitable conservation unit’ (e.g.

ESU, MU, etc.) because the definitions of these terms can

be vague, not quantitative, and depend on the manage-

ment objective (Waples & Gagiotti 2006). Since several

‘population’ concepts can be found in literature (Fraser &

Bernatchez 2001), R. Waples suggested choosing the popu-

lation concept (ESU, MU, etc.) that is appropriate to the

objective(s) of each study. One way to detect the number

of populations is to test for a statistically significant genetic

differentiation. Statistical power is influenced by (i) popula-

tion differences (effect size) and (ii) data richness (numbers

of individuals, number of samples, number of loci and alle-

les). Then, important biological differences might be

missed if data are limited (low power). On the other hand,

statistical significance does not guarantee biological signifi-

cance, especially when large amounts of data are available

(i.e. high power detects even trivial differences, see Palsboll

et al. (2007). This failing should be a major concern in the

age of genomics. Also, standard statistical tests usually do

not properly answer the question ‘Is it different enough?’

because they reject only the null hypothesis of no differen-

tiation (panmixia).

Another way to detect population structure and identify

population units is to use Bayesian clustering methods

such as Structure (Pritchard et al. 2000), BAPS (Corander

et al. 2004) and ADMIXTURE (Alexander et al. 2009), but these

methods may have reduced power with high gene flow

species (Jombart et al. 2010; Kanno et al. 2011; Benestan

et al. 2015). Nevertheless, absence of genetic differentiation

at neutral markers does not mean absence of adaptive dif-

ferences (Allendorf et al. 2010). Therefore, using markers

influenced by selection could be a promising research ave-

nue for delineating important conservation units (see study

conducted on herring by Limborg et al. (2012a) for an

example), particularly in high gene flow species (Gagnaire

et al. 2015). However, a pattern of adaptive divergence

may not necessarily match the neutral pattern (e.g. when

one adaptive group overlaps two neutral ones) as the pro-

cesses affecting adaptive and neutral genetic markers are

different. Then, combining neutral and adaptive markers in

a hierarchical approach to define conservation units, as

suggested by Funk et al. (2012) may encounter practical
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issues in delineating conservation units. Yet, few studies

already used information on adaptive differentiation to

improve conservation decisions (Limborg et al. 2012a,b;

Bourret et al. 2013; Larson et al. 2014). Nevertheless, given

the considerable proportion of false positive in outliers

detection (DeMita et al. 2013; Franc�ois et al. 2016), it is cru-

cial to complement the pattern of adaptive divergence aris-

ing from genomics data with ecological, phenotypic and

environmental data. Further research is needed to assess

this issue in the future.

Adaptive genomics as a first step (Michael Schwartz)

Michael Schwartz, Director of the National Genomics Labo-

ratory for Wildlife and Fish Conservation (in Montana), led

a discussion that focused on the extent of direct use of geno-

mic data in conservation and natural resource management

(Shafer et al. 2015; Garner et al. 2016). One side of the debate

suggests that genomics has advanced fish and wildlife con-

servation by increasing the number of markers assayed, but

has failed to live up to its promise to elucidate the genetic

basis for adaptation in a way that can be used by managers

(Shafer et al. 2015). The other side notes that genomics is cur-

rently being used by management agencies in a variety of

taxa, but that the nonacademic nature of some laboratories

applying genomics to conservation can lead to a lag in pub-

lishing in academic journals. Participants and instructors

suggested reasons for a potential gap between genomics and

direct management application, most noticeably, that of cost

and a lack of familiarity (e.g. some managers are more com-

fortable with the vocabulary or concepts surrounding

microsatellite data (and data analysis) than with novel geno-

mic techniques in decision-making).

The group then discussed how to avoid false positives

when identifying outliers by applying statistical correction

for multiple testing such as Bonferroni or false discovery

rate (FDR) correction (Narum 2006). Power to detect true

outliers seems to be highly dependent on sampling and

statistic test used, whether it controls or not for population

structure (Lotterhos & Whitlock 2015). There was an over-

all recognition by those using genomic approaches that

careful identification of outlier-loci was a first step. Then,

additional empirical evidence showing the functional

importance of the outlier in a relevant ecological context is

a mandatory step to confirming that these genes is a target

of selection. For that purpose, common garden and trans-

plant experiments, thought difficult to perform in most of

the nonmodel species, would be required (Barrett & Hoek-

stra 2011). When such experiments are not possible, the

observation of the same outlier-loci in multiple indepen-

dent population sets can help confirm local adaptation sig-

natures (Bradbury et al. 2010; Laporte et al. 2016).

RNA-sequencing for management decisions (Joanna Kelley)

Studying gene expression differences among individuals

and populations can provide insight into (i) the molecular

basis of phenotypic differentiation, (ii) variation in

response to environmental conditions, disease, etc., and (iii)

management decisions regarding how and where to man-

age or transplant populations. For example, Barshis et al.

(2013) compared transcriptome-wide gene expression (via

RNA-sequencing (RNA-seq) using Illumina sequencing

technology) among conspecific thermally resilient corals to

identify the molecular pathways contributing to coral resili-

ence. RNA-seq can be also used directly in management

decisions. Narum & Campbell (2015) detected differential

transcriptomic response to heat stress among ecologically

divergent populations of redband trout, which will likely

influence future conservation including avoiding transloca-

tions between the divergent populations.

The approaches to measuring gene expression including

limited gene studies (qPCR and Northern blots) and tran-

scriptome level studies (microarrays and RNA-seq, see

Kodama et al. 2014). There are two RNA enrichment tech-

niques, polyA+ selection and ribosomal depletion, to remove

the highly abundant ribosomal RNAs from the pool of total

RNA, prior to library preparation (Cui et al. 2010). Both

methods are efficient and their use depends largely on finan-

cial resources and whether researchers are interested in cod-

ing transcripts or transcripts that may be regulatory (for

example, long noncoding RNAs). Directional RNA-seq

libraries are recommended to find sense and antisense tran-

scripts, which may be relevant for regulatory processes.

Additionally, reference bias was briefly discussed. In that

context, combining all data sets and generating de novo tran-

scriptome assemblies carefully would be very useful in any

comparative analysis. She discussed the pipeline and analy-

ses described in Kelley et al. (2012). Finally, Joanna Kelley

referred to the Simple Fool’s Guide from Stephen Palumbi’s

lab (Wit et al. 2012) for calling single nucleotide polymor-

phisms (SNPs) based on RNA-seq data.

General advice from instructors

The common advice given by each instructor was to keep

the scientific question of the study in mind at each step

from the initial study design to publication. There is no

single pipeline for analysing all (or even any two) MPS

data sets, and thus the analysis of MPS data requires an

investment in scripting and writing computer code

(http://korflab.ucdavis.edu/Unix_and_Perl/; Antao 2015).

In addition, students and professionals alike can gain a

competitive edge in an increasingly competitive job market

by understanding new computational methods and being

comfortable operating in some kind of programming lan-

guage. These skills are particularly desirable now as the

sheer size of genomic data sets alone demands computa-

tional and scripting or coding prowess.

Robin Waples mentioned the importance of understand-

ing all steps in the process from data production to geno-

type analysis (by filtering data) to avoid conducting

analyses that are not adequate and could lead to data mis-

interpretation. Instructor Tiago Antao disagreed somewhat

by suggesting that one single person cannot expertly

understand every single step of a genomics project;
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however, instructor and ConGen coordinator Gordon Lui-

kart addressed these concerns by recommending close col-

laboration with people who are experts in some of the

different steps of the process.

As a career advice, Jonathan Pritchard recommended

early-career researchers to submit manuscripts online at

the ArXiv or bioRxiv web page (e.g. Ali et al. 2015), so they

can show them on their CV when applying for jobs and to

perhaps get early feedback (edits) from the scientific com-

munity. Submission to bioRxiv could also advance the field

of conservation genomics and ecology faster than by wait-

ing until the paper is actually accepted by a traditional

journal. Many journals no longer have an embargo and

allow early online publication.

In summary, the growing potential for current applica-

tion of genetic and genomics approaches to conservation is

exciting. However, it also requires increasing the develop-

ment of next-generation approaches and great caution

when using massive parallel sequencing. Along with this

meeting review, Figs 1 and 2 provide a conservation geno-

mics framework and highlight important issues arising

from the massive scale data sets.
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