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Abstract

Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding
the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to
inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymor-
phism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here,
we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We vali-
dated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) ampli-
fied consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote
controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of
hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid
method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.
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Introduction

Rainbow trout (RBT; Oncorhynchus mykiss), the most
widely introduced salmonid in the world (Lever 1996),
produce fertile offspring when crossed with cutthroat
trout (O. clarkii), and introgression often continues until a
hybrid swarm is formed and the native cutthroat
genomes are lost (Allendorf & Leary 1988). A major
consequence of such interspecific hybridization may be
outbreeding depression because of the break-up of
co-adapted gene complexes and disruption of local adap-
tations (Allendorf et al. 2004; Muhlfeld et al. 2009).
Introgression poses a serious threat to all subspecies of
cutthroat trout in western North America owing to wide-
spread stocking of rainbow trout and invasion by rainbow
trout and hybrids into historical cutthroat trout habitats.
Currently, range-wide estimates of hybridization in
many of the 12 cutthroat trout subspecies and popula-
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tions are incomplete. Westslope cutthroat trout (WCT;
Oncorhynchus clarkii lewisi), the most widely distributed
subspecies of cutthroat trout, historically occupied aqua-
tic habitats throughout the Columbia, Fraser, Missouri
and Hudson Bay drainages of the United States and Can-
ada (Behnke 2002). However, nonhybridized populations
are estimated to persist in <10% of their historical range
(Shepard et al. 2005). While over half of the population
genetic samples in Shepard et al. (2005) found no evi-
dence of admixture, only 30% had enough individuals
sampled to detect 1% admixture at the 95% level of confi-
dence. As a result, only 15% of the population genetic
samples showed no evidence of admixture (<1%) with a
high degree of confidence.

Markers detecting low amounts of admixture in popu-
lations and individuals will provide an understanding of
the mechanisms causing the spread of hybridization, help
protect nonhybridized populations from invasion, and
aid in identifying nonhybridized populations suitable as
sources for hatchery brood stocks or other conservation
actions (Allendorf et al. 2001). Besides estimates of
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individual or population levels of admixture, the distri-
bution and the frequency of introgressed genotypes
within a population or sample can illuminate the dura-
tion and extent of hybridization (Jiggins & Mallet 2000).
For example, a bimodal distribution is thought to result
from selection against intermediate genotypes or assorta-
tive mating between the species (Jiggins & Mallet 2000;
Weigel et al. 2003). Currently, the number of available
species-diagnostic loci for addressing these questions in
native cutthroat trout and rainbow trout is limited.

The development of additional species-diagnostic
genotyping assays and high-throughput SNP genotyping
systems will provide increased power for detecting
hybridization at the individual level and more precisely
estimating the structure of hybrid zones. Currently,
10-15 diagnostic microsatellite markers are often used to
detect cutthroat and rainbow trout hybridization at the
population level. If we assume that each marker sorts
independently, there is no linkage disequilibrium affect-
ing the markers, and if genotypes are distributed accord-
ing to Hardy-Weinberg ratios (i.e. the samples are
representative of a breeding aggregation or population),
then we can calculate the likelihood of failing to detect a
single RBT allele in any given fish or in a sample of unre-
lated fish using binomial probability (Rasmussen et al.
2010). The probability of detecting 1% hybridization in a
population with 95% certainty and 20 individual samples
requires only eight independent diagnostic markers. In
contrast, to detect 1% admixture in an individual with
95% certainty will require 150 independent diagnostic
markers (Table 1). Similarly, an increase in the number of
diagnostic markers will also improve our ability to differ-
entiate between parental back-crosses and later genera-
tion hybrid crosses.

Recently, we identified a large set of candidate diag-
nostic SNPs using restriction-site-associated DNA (RAD)
sequencing (Hohenlohe et al. 2011). Briefly, we
sequenced a single RAD library (Baird ef al. 2008; Etter

Table 1 The likelihood of detecting a single RBT allele in any
given fish or in a population of unrelated fish using binomial
probability for a number of independent species-diagnostic loci,
samples and percent hybridization

Number Number Probability
of markers of samples %Hybridization of detection
8 1 17 95.0

8 20 1 95.0

46 1 3.1 95.0

46 4 1 97.5

77 1 1.9 95.0

96 1 1.6 95.0

150 1 1 95.0

et al. 2011a) created from 24 fish [11 WCT, 12 coastal rain-
bow trout (O. m. mykiss, CRT), and 1 inland or redband
rainbow trout (O. m. gairdneri, IRT)] and applied strict fil-
tering based on observed heterozygosity and deviations
from Hardy-Weinberg equilibrium to remove homeolo-
gous loci (paralogs resulting from the ancestral salmonid
whole-genome duplication; Lie ef al. 1994). That analysis
produced a total of 2923 RAD markers at which there
was a single candidate SNP fixed between the two spe-
cies, and no other polymorphism, within the informative
48-bp RAD tag sequence (Hohenlohe et al. 2011). Here,
we expand the list of candidate SNP markers, and we use
microfluidic PCR assays to verify a subset of them for
high-throughput estimates of hybridization in trout. We
chose to develop a bioinformatics pipeline for this pur-
pose because of its cost-effectiveness and because the
rainbow trout genome would subsequently be available
for the development of additional markers.

Materials and methods

In addition to the 2923 single-SNP candidate markers
from the study by Hohenlohe et al. (2011), we identified
candidate diagnostic SNPs in RAD tags containing two
putative fixed SNPs in the 48-bp sequence (an additional
643 markers) and those containing one putative fixed
SNP and one additional site polymorphic within one of
the taxa (an additional 1348 markers). We aligned the
total set of 4914 RAD tag sequences against a published
database of rainbow trout sequence contigs (Sanchez
et al. 2009) using the program Bowtie (Langmead et al.
2009). We allowed up to three mismatches between the
WCT or the CRT and the reference sequence. The data set
from the study by Sanchez et al. (2009) contained 47 526
contigs ranging in size from 185 to 1978 bp, produced by
454 sequencing of a reduced representation genomic
library in rainbow trout. A total of 66 (1.3%) of our candi-
date RAD tags aligned against one or more of the contigs
from the study by Sanchez et al. (2009) with at least 50bp
of flanking sequence on either side of the diagnostic SNP.
Ten of these loci were dropped after preliminary data
suggested one of the primers or probes was not amplify-
ing. Sequences for the remaining 56 candidate markers
were submitted to KBioscience for the design of KASPar
SNP genotyping assays.

A total of 92 individuals from 22 populations and
seven hatchery strains plus two heterozygous positive
controls (F1s) were then used to validate the 56 assays on
Fluidigm 96.96 microfluidic PCR chips. The individuals
included two cutthroat trout species, WCT and YCT (Yel-
lowstone cutthroat trout, O. c. bouvieri), as well as IRT
and CRT (Table 2). All samples came from putatively
nonhybridized populations, based on a current panel of
seven diagnostic microsatellite loci and seven indel loci,
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Table 2 Location name, species, whether

wild/ the fish is of wild or hatchery origin, and
Location name Species  Hatchery N  Basin Subbasin the number of samples, basin and
subbasin information for the screening
Anaconda, MT WCT H 12 NA* NA panel used to validate species-diagnostic
Big Foot Creek WCT w 2 Columbia  Upper Kootenai assays. Species are labelled as westslope
Copper Creek WCT Y 2 Columbia Flint-Rock cutthroat trout (WCT), Yellowstone
Cottonwood Creek WCT W 3 Columbia  Lower Flathead cutthroat trout (YCT), inland or redband
Davis Creek WCT Y 4 Columbia Bitterroot rainbow trout (IRT), and coastal rainbow
Flat Creek WCT ' 3 Columbia Upper Kootenai trout (CRT)
Gillispie Creek WCT W 3 Columbia  Flint-Rock
Hawk Creek WCT W 2 Columbia  N. F. Flathead
Humbug Creek WCT w 2 Columbia  Blackfoot
McGinnis Creek WCT W 3 Columbia  Lower Clark Fork
Morrison Creek WCT W 3 Columbia  Middle Flathead
Ringeye Creek WCT W 2 Columbia  Blackfoot
Runt Creek WCT W 3 Columbia  Yaak
S. Fork Jocko WCT W 3 Columbia  Lower Flathead
Six Mile Creek WCT W 3 Columbia  Middle Clark Fork
Werner Creek WCT w 3 Columbia  N. F. Flathead
Bear Creek WCT W 1 Missouri Red Rock
McClellan Creek WCT 4 1 Missouri Upper Missouri
McVey Creek WCT w 1 Missouri Big Hole
Big Timber, MT YCT H 6 NA NA
Slough Creek YCT W 4 Missouri Yellowstone
Lake Koocanusa, BC IRT W 4 Columbia  Yaak
Yahk River, BC IRT W 5 Columbia Yaak
Abbot Creek CRT W 2 Columbia  Middle Flathead
Arlee, MT CRT H 7 NA NA
Eagle Lake, CA CRT H 2 NA NA
McConaughy, NE CRT H 2 NA NA
Fish Lake, UT CRT H 2 NA NA
Erwin/Arlee Cross, TN  CRT H 2 NA NA

*Basin and Subbasin designations were not made for hatchery stocks.

except for fish from Lake Koocanusa, which appear to
have both a CRT and IRT genetic component (R. Leary,
personal communication), and the South Fork of the
Jocko River, which appear to have a CRT component.
WCT samples included two year classes from the
Washoe Park State Trout Hatchery, Anaconda Montana,
and samples from 18 wild populations, including three
populations from the Missouri River basin east of the
Continental Divide. YCT samples were from the Yellow-
stone River State Trout Hatchery, Big Timber, Montana,
and a population in Slough Creek. IRT samples were
from two populations in the Kootenai River drainage in
Montana. CRT were taken from hatchery stock from
across the country to account for the multitude of poten-
tial sources used currently and historically for stocking.

Results

Forty-six of fifty-six assays (82%) were diagnostic for the
identification WCT, RBT and hybrids (Table 3). An assay
was considered diagnostic if both heterozygous positive
controls showed separation from the homozygous

© 2012 Blackwell Publishing Ltd

genotype clusters and >95% of samples had concordant
genotypes (i.e. genotype agreed with expectation estab-
lished by earlier microsatellite/indel data). Eight of ten
assay failures were attributed to the design process,
including poor quality or inadequate sequence data
being used to design the assay (e.g. using sequence from
a paralogous region or sequence containing errors) or
errors in the primer or probe design and manufacture
process. These failures included three assays where one
or both probes did not amplify, and one assay appears to
have amplified a homeolog. In fact, this locus had an
elevated depth of sequence reads in the original RAD
sequencing run, in the 95th percentile among the 2923
fixed single-SNP candidate markers (Hohenlohe et al.
2011), consistent with the interpretation that it represents
two incorrectly assembled homeologs.

Given a total of 46 assays for detecting RBT and WCT
hybridization and four samples from a population, we
have a 97.5% probability of detecting 1% introgression in
a hybrid swarm. In an individual fish, we have a 95%
probability of detecting >3.1% introgression with the
same number of assays (Table 1). However, very low
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levels of introgression will still be difficult to detect at the
individual level. Our probability of detecting 1% intro-
gression in a fish using 46 markers is only 60%.

Because our preliminary screening panel was com-
posed of a few individuals from many populations
instead of many individuals from a few populations, we
have little power to detect alleles at low frequency in
these populations. Thus, we cannot exclude the possibil-
ity that some of the diagnostic markers may share a
low-level polymorphism between WCT and RBT. In 12
species-diagnostic assays, individuals with genotypes
indicative of low-level polymorphisms or RBT hybridiza-
tion were detected. The SNP from RAD 49331 was not
diagnostic in our screening panel. One individual was
homozygous for the ‘RBT allele’ at this locus, and 8
others were heterozygotes. These individuals, however,
did not possess any other genotypes at the other loci
analysed indicative of hybridization. Thus, this locus
appears to be polymorphic in WCT. WCT from north-
western Montana or south-eastern British Columbia were
heterozygous in five additional assays, and the level of
introgression in these populations is uncertain due in
part to the potential presence of IRT alleles (Table S1).
Fish from Lake Koocanusa may have low levels of intro-
gression from CRT or WCT. In the fish from Yaak, BC
and Runt Creek, these polymorphisms may represent
natural levels of introgression between the sympatric
WCT and IRT populations. In five of the remaining six
assays, the heterozygous fish came from hatchery popu-
lations. Because hatchery brood stock samples have been
extensively screened for admixture using indels and mi-
crosatellites, it is most likely that these alleles represent
shared low-level polymorphisms between WCT and
RBT. Testing of additional samples will be required to
determine their frequency and the usefulness of the
assays for species identification and admixture analysis.

Discussion

Our conversion rate of 82% for diagnostic assays suggests
that RAD sequencing offers a reliable and relatively quick
and inexpensive way to generate large numbers of SNP
markers that does not require a large screening panel
(e.g. Seeb et al. 2011). Conversion rates can vary widely
and depend on the variability and divergence of the tar-
get species, the number of samples sequenced before
designing the assays, whether the SNP is in a conserved
or highly variable region (e.g. diagnostic between species
or polymorphic within species) and on the number and
extent of samples used to validate the assay. New sample
library protocols and next-generation sequencing tech-
niques like RADs promise to make very low-cost marker
development available for most organisms (Pennisi 2011)
even when no genomic resources are available.

© 2012 Blackwell Publishing Ltd

The development of additional species-diagnostic
genotyping assays provides increased power for detecting
hybridization at the individual level and more precisely
estimating the structure of hybrid zones. With the addi-
tion of our 46 assays to the 31 previously available SNPs
(Finger et al. 2009; McGlauflin et al. 2010, Harwood &
Phillips 2011; Kalinowski et al. 2011), the number of cur-
rently available diagnostic SNPs between WCT and RBT
has increased to 77. With 77 diagnostic SNPs, we can
detect 1.9% introgression with 95% certainty at the indi-
viduallevel. Our probability of detecting 1% introgression
in a fish using 96 markers is only 85%, reaching 95% with
150 markers (Table 1). The ability to detect low levels of
hybridization at the individual level increases sampling
scheme flexibility, removing the requirement that aggre-
gations of 20-30 samples be considered a population.

We developed a bioinformatic pipeline using publicly
available 454 reads (Sanchez et al. 2009) for identifying
flanking sequence required for assay design that will be eas-
ily applied to the rainbow trout genome sequence when it is
published (Miller et al. 2011). This reduced our set of candi-
date loci from 4914 to 66 (1.3%). At the time of this experi-
ment, using 454 sequencing to produce reads >100-nt reads
required for SNP assay development was beyond our bud-
get. The reference genome sequence will allow assay design
for most of the SNPs identified in our RAD loci.

An alternative approach to using published long read
sequence data is to generate longer contiguous sequence
reads at each RAD tag using over-lapping paired-end
sequencing (Etter et al. 2011b). This technique holds great
promise for allowing assay design on the full set of candi-
date SNP markers for any species. In addition, this
approach should have a higher validation rate, because
SNP detection and flanking sequence would come from
the same individuals and populations.

RAD sequencing is one of a family of approaches
applying high-throughput sequencing to a reduced rep-
resentation of a genome to identify and genotype large
numbers of SNP markers in organisms without substan-
tial genetic resources (Cosart et al. 2011; Davey et al.
2011). Next-generation sequencing approaches require
slightly more bioinformatic effort compared with tradi-
tional marker discovery, but a number of publicly avail-
able tools are being developed to handle these types of
data (Catchen et al. 2011; Davey et al. 2011). One advan-
tage of RAD over related restriction-enzyme-reduced
representation sequencing techniques in taxa with com-
plex, repetitive genomes is that the set of markers does
not depend on a fragment size selection step, so that it is
more consistent across libraries (Davey et al. 2011). This
helps reduce variation between runs and allows the com-
pilation and re-analysis of large sequence databases
across related species, populations and individuals gen-
erated using the same RAD library technique. We con-
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clude that the emerging techniques for the generation
and analysis of RAD sequencing data provide a relatively
quick and cost-effective method for the identification of
large numbers of species-diagnostic SNPs.
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